

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

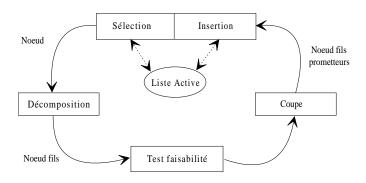
Méthodes de recherche locale et hybridations

GREYC, CNRS UMR 6072 Université de Caen Basse-Normandie, France

Plan de la présentation

- Motivation
- Méthodes complètes
- Méthodes de recherche locale
- 4 Hybridation RL et PPC
- 5 VNS/LDS+CP
- 6 Heuristiques de choix de voisinage

- La programmation par contraintes :
 - propose un ensemble de mécanismes pour définir les objectifs, les contraintes et la recherche de solutions:
 - n'est sujette à très peu de restriction en terme de modélisation;
 - techniques de recherche essentiellement basées sur des méthodes complètes:
 - mécanismes de filtrage très puissants.
- Devrait donc être un outil idéal pour résoudre des problèmes combinatoire sous contraintes


- Par contre, avec la programmation par contraintes :
 - parcours systématique de l'arbre de recherche;
 - temps de résolution peut être très important;
 - toute interruption de la recherche en cours de route implique des solutions de qualité médiocres;

Principe d'une recherche arborescente

Motivation Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

- (a) stratégie de sélection/exploration (DFS/BFS,...);
- (b) stratégie de décomposition/recherche;
- (b) stratégie de coupes;

Exemple d'illustration

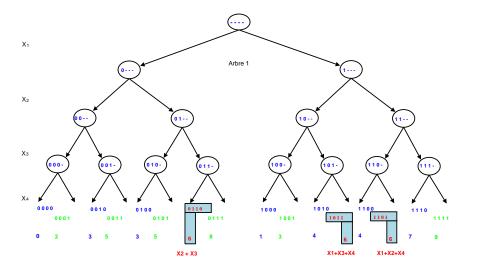
Motivation Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

$$x_1 :: \{0,1\}$$

 $x_2 :: \{0,1\}$
 $x_3 :: \{0,1\}$
 $x_4 :: \{0,1\}$

16 affectations3 solutions


$$x_1 + 3x_2 + 3x_3 + 2x_4 = 6$$

Stratégie de recherche : Input-order/Min

Motivation Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

$Strat\'egie~de~recherche: Decreasing Coef/Ma^{N\'ethodes~complètes}_{M\'ethodes~de~recherche~locale}$

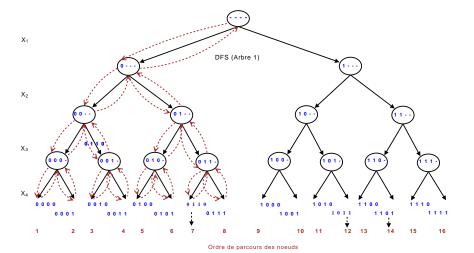
Motivation

Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

X2+X3

X1+X2+X4

X1+X3+X4

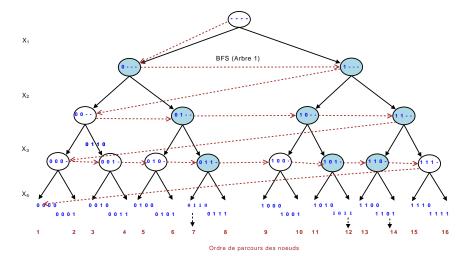

Stratégie d'exploration : Depth First Search Méthodes de recherche locale

Motivation

Méthodes complètes

Hybridation RL et PPC VNS/LDS+CP

Heuristiques de choix de voisinage



Stratégie d'exploration : Breadth First Searc Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC

Motivation

VNS/LDS+CP Heuristiques de choix de voisinage

Recherches arborescentes tronquées

- A cutoff limit to stop exploring a (sub-)tree
 - some branches are skipped ightarrow incomplete search
- When no solution found, restart with enlarged cutoff limit.
- Provide a good solution very quickly.
- Diversify the exploration of the search space.

Recherches arborescentes tronquées

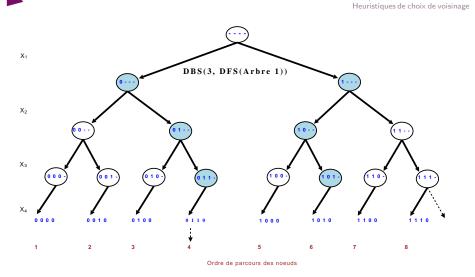
- Bounded Backtrack Search (Harvey, 1995)
 - restricts number of backtracks
- Depth-bounded Backtrack Search (Cheadle et al., 2003)
 - restricts depth where alternatives are explored
- Iterative Broadening (Ginsberg and Harvey, 1990)
 - restricts breadth in each node

Bounded Backtrack Search - BBS

Motivation

Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage



Depth-bounded Backtrack Search - DBS

Motivation Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP

Heuristics search - some observations

- Heuristics a guide of search
 - they recommend a value for assignment
 - quite often lead to a solution
- What to do upon a failure of the heuristic?
 - BT rather repairs later assignments than the earliest ones thus BT assumes that the heuristic guides it well in the top part
- Heuristics are less reliable in the earlier parts of the search tree (as search proceeds, more information is available).
- The number of heuristic violations is usually small.

Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

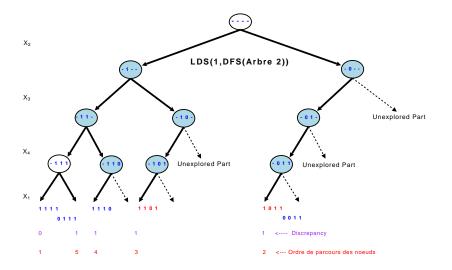
Motivation

Principe

Soit h une heuristique dans laquelle on a une grande confiance. Le principe d'une recherche à déviation est de suivre l'heuristique h lors du parcours de l'arbre de recherche, mais en considérant que h peut se tromper un petit nombre (k) de fois. On s'autorise donc k écarts (discrepancies) à l'heuristique h lors du parcours de l'arbre.

- Discrepancy = écart à l'heuristique h
- L'idée de base : changer l'ordre d'exploration des branches
 - préférer les branches ayant moins discrepancies
 - préférer les branches ayant des discrepancies en haut de l'arbre

- Limited Discrepancy Search (Harvey & Ginsberg, 1995)
 - restricts a maximal number of discrepancy in the iterartion
- Improved LDS (Korf, 1996)
 - restricts a given number of discrepancies in the iteration
- Depth-bounded Discrepancy Search (Walsh, 1997)
 - restricts discrepancies till a given depth in the iteration



LDS(k) - Illustration sur l'exemple

Motivation

Méthodes complètes

Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

Principe de base d'une recherche locale

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

 Une recherche locale fait appel à un voisinage défini sur l'ensemble des configurations.

Voisinage

- Fonction $\mathcal{N}: \mathcal{S} \to 2^{\mathcal{S}}$ qui associe à chaque configuration $s \in \mathcal{S}$ un sous-ensemble $\mathcal{N}(s)$ (l'ensemble des voisins de s) de \mathcal{S} .

Mouvement

- Opération qui consiste à modifier une configuration $s \in \mathcal{S}$ en une autre configuration voisine $s' \in \mathcal{N}(s)$.

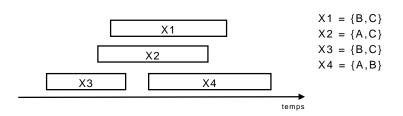
Optimum local

- Configuration s de \mathcal{S} telle que $f(s) \leq f(s')$, pour tout voisin $s' \in \mathcal{N}(s)$.

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

Procédure générale

- Étape 1 (initialisation)
 - a) choisir une solution initiale s dans ${\cal S}$
 - b) $s^{\star}:=s$ (i.e. mémoriser la meilleure solution trouvée)
- Étape 2 (choix)
 - a) choisir s' dans $\mathcal{N}(s)$
 - b) s := s' (i.e. remplacer s par s')
 - c) terminer et retourner la meilleure solution trouvée si la condition d'arrêt vérifiée
- Étape 3 (mise à jour)
 - a) $s^* := s \operatorname{si} f(s) < f(s^*)$
 - b) aller à l'étape 2



Exemple d'illustration

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC

Heuristiques de choix de voisinage

VNS/LDS+CP

Les contraintes:

C(x1,x2): {(B,A), (B,C), (C,A)}

C(x1,x3): {(B,C), (C,B)}

C(x1,x4): {(B,A), (C,B), (C,A)}

 $C(x2,x3): \{(A,B), (A,C), (C,B)\}$

C(x2,x4): {(A,B), (C,A), (C,B)}

Recherche locale : descente stricte

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

Étape 2 (choix)

- a) choisir s' dans $\mathcal{N}(s)$ tq f(s') < f(s)
- b) s := s' (i.e. remplacer s par s')
- c) terminer si, pour tout s' $\mathcal{N}(s)$ f(s') > f(s) (i.e. s'arrêter sur un optimum local)

Remarques

- Décision à prendre : 1ère ou meilleure amélioration
- La procédure s'arrête au 1er optimum local rencontré.
- Il est possible de poursuivre la recherche en effectuant une relance aléatoire (restart).
- → Comment s'échapper des optima locaux?

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 $\rightarrow 2$ **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

conflits avec	nombre total de conflits

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 $\rightarrow 2$ **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

conflits avec	nombre total de conflits

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 $\rightarrow 2$ **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

	variable	conflits	nombre total
	changée	avec	de conflits
-	$x_1 \rightarrow C$		

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$		

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1,x_3)$	1

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1,x_3)$	1
$x_3 \rightarrow C$		

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1,x_3)$	1
$x_3 \rightarrow C$	$c(x_2, x_4)$	1

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable changée	conflits avec	nombre total de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1, x_3)$	1
$x_3 \rightarrow C$	$c(x_2, x_4)$	1
$x_4 \rightarrow B$		

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 \rightarrow 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1, x_3)$	1
$x_3 \rightarrow C$	$c(x_2,x_4)$	1
$x_4 \rightarrow B$	$c(x_1, x_3)$ et $c(x_1, x_4)$	2

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 $\rightarrow 2$ **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1,x_3)$	1
$x_3 \rightarrow C$	$c(x_2, x_4)$	1
$x_4 o B$	$c(x_1, x_3)$ et $c(x_1, x_4)$	2

Accepter
$$(x_1 \to C) : s' = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable changée	conflits avec	nombre total de conflits

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable changée	conflits avec	nombre total de conflits

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \to B$		

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \to B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$		

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1
$x_3 \rightarrow C$		

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \to B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1
$x_3 \rightarrow C$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1
$x_3 \rightarrow C$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_4 \rightarrow B$		

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \to B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1
$x_3 \rightarrow C$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_4 o B$	_	0

2ème itération :
$$s = (x_1 = C, x_2 = A, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_2 \rightarrow C$	$c(x_1,x_2)$	1
$x_3 \rightarrow C$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_4 o B$	_	0

Accepter
$$(x_4 \to B) : s' = (x_1 = C, x_2 = A, x_3 = B, x_4 = B) \to Solution!!$$

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

$$\rightarrow$$
 2 **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1, x_3)$	1
$x_3 \rightarrow C$	$c(x_2, x_4)$	1
$x_4 o B$	$c(x_1, x_3)$ et $c(x_1, x_4)$	2

1er itération :
$$s = (x_1 = B, x_2 = A, x_3 = B, x_4 = A)$$

 $\rightarrow 2$ **conflits** : $c(x_1, x_3)$ et $c(x_2, x_4)$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_2, x_4)$	1
$x_2 \rightarrow C$	$c(x_1, x_3)$	1
$x_3 \rightarrow C$	$c(x_2, x_4)$	1
$x_4 \rightarrow B$	$c(x_1, x_3)$ et $c(x_1, x_4)$	2

Accepter
$$(x_2 \to C)$$
 : $s' = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
\ <u></u>		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
\ <u></u>		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1, x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
'		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_3 \rightarrow C$		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_3 \rightarrow C$	$c(x_2, x_3)$	1

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_3 \rightarrow C$	$c(x_2, x_3)$	1
$x_4 o B$		

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_3 \rightarrow C$	$c(x_2, x_3)$	1
$x_4 o B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

2ème itération :
$$s = (x_1 = B, x_2 = C, x_3 = B, x_4 = A)$$

variable	conflits	nombre total
changée	avec	de conflits
$x_1 \rightarrow C$	$c(x_1,x_2)$	1
$x_2 \rightarrow A$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2
$x_3 \rightarrow C$	$c(x_2, x_3)$	1
$x_4 o B$	$c(x_1, x_3)$ et $c(x_2, x_4)$	2

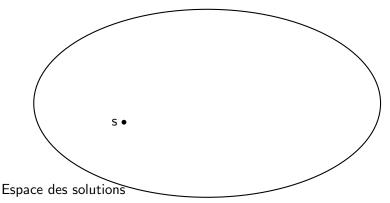
Aucun changement qui réduit le nombre de conflits

$$\rightarrow FIN$$

Recherche locale : recuit simulé

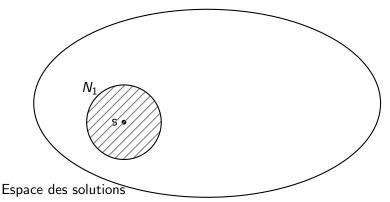
Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

Étape 2 (choix)

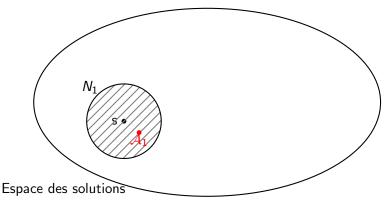

- a) choisir au hasard s' dans $\mathcal{N}(s)$, calculer $\Delta = f(s') f(s)$
- b) si $\Delta \leq 0$ alors accepter s sinon accepter s avec une probabilité $p(\Delta, T)$
- C) si terminer si la condition d'arrêt est réalisée (un nb. max d'itér est effectué...)

Remarques

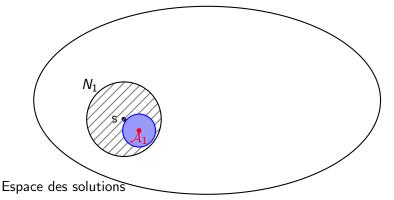
- La probabilité d'accepter dépend du niveau de la dégradation de la solution (Δ) et d'un paramètre appelé température.
- La température décroît au cours de la recherche, ce qui rend les dégradations de la solution de moins en moins probables.



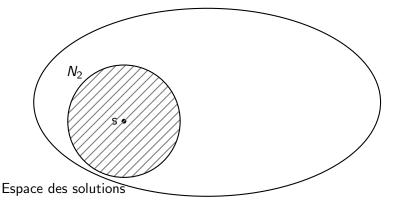
- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



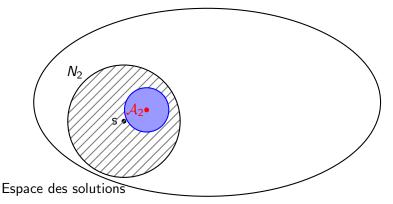
- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



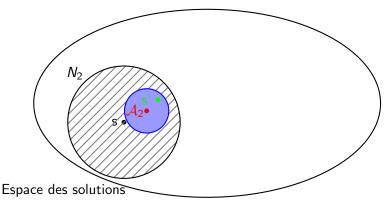
- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



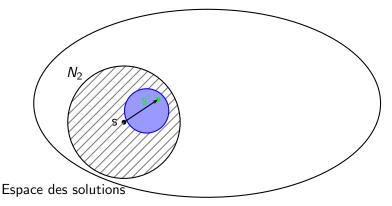
- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



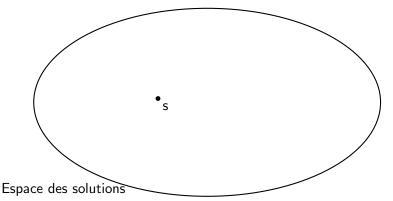
- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

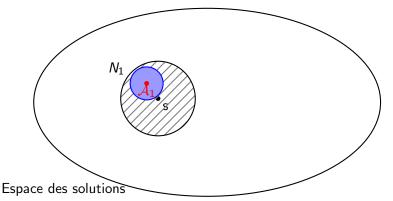


- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \dots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

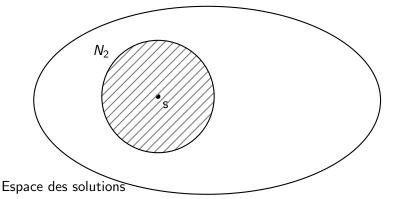


- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

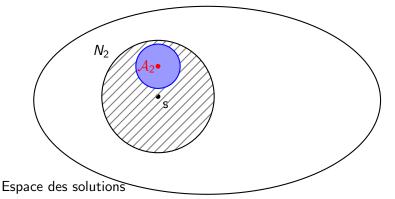
- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



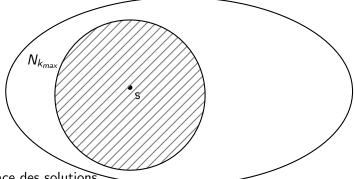
- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \dots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

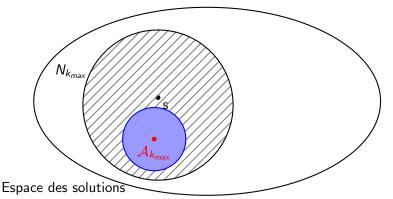


- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.


- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

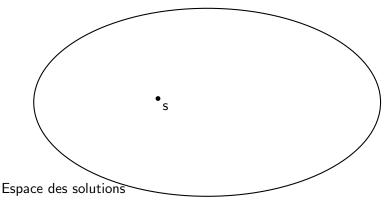
Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.



Espace des solutions

Recherche à voisinage variable (VNS, Hansen et al., 1997)


- ullet un ensemble de voisinages $\{N_{k_{min}},N_{k_{min+1}},\ldots,N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

Recherche à voisinage variable (VNS, Hansen et al., 1997)

- ullet un ensemble de voisinages $\{N_{k_{min}}, N_{k_{min+1}}, \ldots, N_{k_{max}}\}$,
- changer de voisinage durant la recherche,
- explorer chaque voisinage par une recherche locale.

Exploration des voisinages étendus par de la PPC

Pourquoi les voisinages étendus?

Voisinages étendus : Avantages

- A larger neighborhood means :
 - More solutions are considered
 - Better chance of avoiding local minima

Voisinages étendus : Inconvénients

- A larger neighborhood also means :
 - More solutions need to be evaluated
 - The complexity of evaluating all solutions makes having neighborhoods too large unattractive

- Unless we do not evaluate all the solutions!
 - This is were Constraint Programming is useful

Constraint Programming vs. Local Search

- Local search methods
 - Very fast and efficient
 - Model and search strategies closely linked
 - Complex constraints hard to model
- Constraint Programming
 - The traditional Depth-First Search strategy is too slow
 - Model and Search are completely separated
 - Complex constraints fairly easy to model
- The ultimate goal would be to get all the advantages without the inconveniences

Deux classes principales d'hybridations :

- les hybridations dites imbriquées, dans lesquelles RL et PPC sont étroitement liés durant la recherche,
 - hybridations imbriquées sur la base d'un algorithme complet,
 - hybridations imbriquées sur la base d'un algorithme de RL.
- les hybridations par compositions (ou non imbriquées), dans lesquelles les deux mécanismes complets et incomplets cohabitent et coopèrent de façon indirecte.

Hybridations sur la base d'un algorithme complet

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

Objectif : Améliorer l'efficacité d'une méthode de recherche arborescente en y greffant des mécanismes de RL.

- RL aux points de choix d'une recherche arborescente appliquer une RL à certains points de choix, pour essayer de trouver rapidement de bonnes solutions, et améliorer rapidement le majorant courant de l'optimum (Prestwich, 2000).
- recherche locale à partir des instanciations partielles construire une bonne instanciation partielle à l'aide de LDS, puis compléter cette instanciation par un algorithme de recherche locale (caseau, 99).

Hybridations sur la base d'un algorithme de RL

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

Objectif: Utiliser des mécanismes complets pour mieux exploiter la notion de voisinage et de choix dans le voisinage.

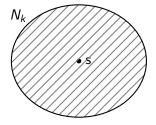
• Exploration de voisinages par une recherche complète :

- Relaxer (désinstancier) une grande partie d'une instanciation complète courante, puis essayer de la reconstruire si possible de meilleure qualité.
- Large Neighborhood Search (LNS, Show98) utilise un LDS pour explorer le voisinage étendu.
- LNS/CP/GR (Lobjois, 2000), dans le cadre des VCSP, utilise un glouton avec renforcement de cohérence.
- → C'est de loin les hybridations les plus fructueuses.

Un schéma d'hybridation imbriquée sur la base d'une RL :

- une recherche locale dans un voisinage de taille variable (VNS), à base de relaxation/reconstruction d'un sous-ensemble des variables du problème;
- une reconstruction à base de LDS combinée avec une propagation de contraintes à base de calcul de minorant, pour évaluer le coût et la légalité des mouvements effectués.

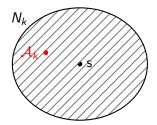
Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP


Pour k une dimension de voisinage, et s une solution courante :

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP

Four k une dimension de voisinage, et s une solution courante .

ullet N_k correspond à l'ensemble des combinaisons de k variables parmi X,

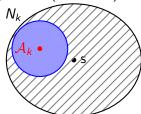


VNS/LDS+CP (Loudni & Boizumault, EJOR 2008)

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP

Pour k une dimension de voisinage, et s une solution courante :

- ullet N_k correspond à l'ensemble des combinaisons de k variables parmi X,
- l'heuristique de choix de voisinage sélectionne dans N_k un sous-ensemble de k variables, noté X_r ,
- une affectation partielle A_k est définie en désaffectant les k variables : $A_k = s \setminus \{(x_i = v_i) \ t.q. \ x_i \in X_r\},$



VNS/LDS+CP (Loudni & Boizumault, EJOR 2008)

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC

Pour k une dimension de voisinage, et s une solution courante :

- ullet N_k correspond à l'ensemble des combinaisons de k variables parmi X,
- l'heuristique de choix de voisinage sélectionne dans N_k un sous-ensemble de k variables, noté X_r ,
- une affectation partielle A_k est définie en désaffectant les k variables : $A_k = s \setminus \{(x_i = v_i) \ t.q. \ x_i \in X_r\},$
- les variables désaffectées sont ensuite reconstruites par une recherche arborescente partielle (LDS+CP).

 x_{13}

 x_{17}

 x_{20}

VNS/LDS+CP

Motivation Méthodes complètes Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP

Heuristiques de choix de voisinage

 x_1 *X*3 X_2 *X*5 X_4 *X*₆ *X*9 X₁₀ *X*11 X₁₂ *X*₁₄ *X*15 *X*₁₆ *X*₁₈ *X*₁₉

1.
$$s = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}$$

2. $X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$

*X*21

*X*8

VNS/LDS+CP

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP

Heuristiques de choix de voisinage

 x_1 X3 Xγ *X*5 X_4 *X*₆ X₉ *X*11 *X*₁₂ *X*15 *X*₁₆ *X*₁₉ *X*₁₈

$$\mathbf{1.}s = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}\$$

2.
$$X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$$

3.
$$A \leftarrow s \setminus \{(x_i = v_i) \text{ t.q. } x_i \in X_r \}$$

*X*8

X₁₀

*X*₁₄

X21

 X_{13}

 x_{17}

VNS/LDS+CP

Motivation Méthodes complètes Méthodes de recherche locale Hybridation RL et PPC

Heuristiques de choix de voisinage

VNS/LDS+CP

 x_1 *X*3 Xγ *X*5 X_4 *X*₆ X₉ *X*11 X₁₂ *X*15 *X*16 *X*₁₈ *X*₁₉

1.
$$s = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}$$

2. $X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$

3.
$$A \leftarrow s \setminus \{(x_i = v_i) \ t.q. \ x_i \in X_r \}$$

*X*8

X₁₀

*X*₁₄

 x_{21}

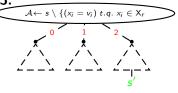
 X_{13}

 x_{17}

VNS/LDS+CP

Motivation Méthodes complètes Méthodes de recherche locale Hybridation RL et PPC

VNS/LDS+CP Heuristiques de choix de voisinage


*X*15

*X*16

*X*₁₉

1.
$$s = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}$$

2. $X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$

2. $\wedge_r = \{ x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20} \}$

*X*₁₈

*X*8

X₁₀

*X*₁₄

 x_{21}

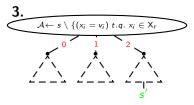
 X_{13}

 x_{17}

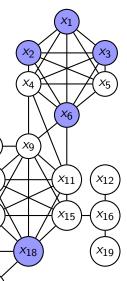
 x_{13}

 X_{17}

VNS/LDS+CP

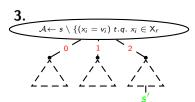

Motivation Méthodes complètes Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP

Heuristiques de choix de voisinage



$$\mathbf{1.s} = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}$$

2.
$$X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$$



4. Si
$$f(s') < f(s)$$
 alors $s \leftarrow s'$ et $k \leftarrow k_{min}$ Sinon $k \leftarrow k+1$

1.
$$s = \{(x_1 = v_1), \dots, (x_{21} = v_{21})\}$$

2.
$$X_r = \{x_1, x_2, x_3, x_6, x_7, x_{18}, x_{20}\}$$

4. Si
$$f(s') < f(s)$$
 alors

$$s \leftarrow s'$$
 et $k \leftarrow k_{min}$

Sinon
$$k \leftarrow k+1$$

X₁₀

 x_{14}

 x_{21}

 x_{13}

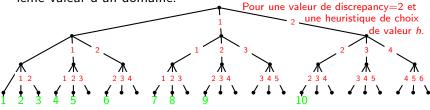
 X_{17}

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP

10

Algorithme 1: VNS/LDS+CP

```
function VNS/LDS+CP(\mathcal{X}, \mathcal{C}, k_{init}, k_{max}, \delta_{max}):
begin
       S \leftarrow \text{genInitSol()};
       k \leftarrow k_{init}:
       while (k < k_{max}) \land (notTimeOut) do
              \mathcal{X}_{unassigned} \leftarrow \text{Hneighborhood}(N_k, S);
              A_k \leftarrow S \setminus \{(x_i = a) \mid x_i \in \mathcal{X}_{unassigned}\};
              S' \leftarrow LDS+CP(A_k, \mathcal{X}_{unassigned}, \delta_{max}, f(S), S);
             if f(S') < f(S) then
                  S \leftarrow S':
                  k \leftarrow k_{init}; // intensification
            end
              else k \leftarrow k+1: // diversification
      end
       return S:
end
```



Limited Discrepancy Search

Motivation
Méthodes complètes
Méthodes de recherche locale
Hybridation RL et PPC
VNS/LDS+CP
Heuristiques de choix de voisinage

La version n-aire (LDS+CP) étendu à l'optimisation de LDS :

- effectue un parcours en profondeur d'abord,
- effectue seulement l'itération avec la valeur maximale de discrepancy,

• comptabilise une discrepancy de (k-1) lors de la sélection de la k ième valeur d'un domaine.

valeur de discrepancy

• ordre de visite des nœuds

Peu d'heuristiques indépendantes du problème existent. Parmi celles-ci, nous pouvons citer ConflictVar basée sur la notion de conflit.

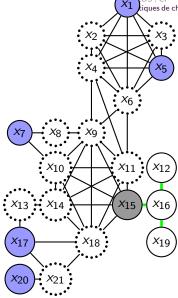
Définition d'une variable en conflit

Soit $\mathcal A$ une affectation complète, une variable est en dite en conflit lorsqu'elle figure dans au moins une contrainte violée dans $\mathcal A$.

Principe de ConflictVar : pour k la dimension du voisinage, ConflictVar sélectionne aléatoirement k variables à reconstruire parmi celles en conflit.

Défauts de ConflictVar

Motivation Méthodes complètes Méthodes de recherche locale vbridation RL et PPC


tiques de choix de voisinage

Pour k = 6, ConflictVar pourrait sélectionner les variables en bleu. Or,

- aucune contrainte n'est. complètement désaffectée,
- la phase de reconstruction a peu de chances de les satisfaire.

Légende

- contraintes satisfaites
- 1ière variable sélectionnée
- variables sélectionnées
- ••• prochaines variables ••• pouvant être sélectionnées

Contributions: Plusieurs heuristiques exploitant outre la notion de conflit :

- la topologie du graphe de contraintes,
- le coût des contraintes.

L'objectif de ces heuristiques est de permettre au mécanisme de reconstruction de trouver de meilleures solutions.

Idée de base : Maximiser le degré de liberté des variables à reaffecter.

Degré de liberté d'une variable

Soient X_r un ensemble de variables à reconstruire et x une variable incluse dans X_r , le degré de liberté de x est égal au nombre de variables voisines de x et incluses dans X_r .

ConflictVar-MaxDeg

Motivation Méthodes complètes Méthodes de recherche locale Hybridation RL et PPC VNS/LDS+CP Heuristiques de choix de voisinage

Principe:

- \rightarrow choisit une 1ière variable conflit.
- → sélectionne ensuite les variables (en conflit ou non) ayant le plus de voisins déjà choisis.

Légende

- contraintes satisfaites
- 1ière variable sélectionnée
- variables sélectionnées
- ••• prochaines variables ••• pouvant être sélectionnées