
Computers & Operations Research 33 (2006) 2891–2917
www.elsevier.com/locate/cor

On-line resources allocation for ATM networks with rerouting

Samir Loudnia,∗, Patrice Boizumaulta, Philippe Davidb

aGREYC, CNRS UMR 6072, Université de Caen, Campus 2, 14032 Caen Cedex, France
bEcole des Mines de Nantes - BP 20722, 44307 Nantes Cedex 3, France

Available online 16 February 2005

Abstract

This paper presents an application we developed for France Telecom R&D to solve a difficult real-life network
problem. The problem takes place in an Asynchronous Transfer Mode (ATM) network administration context and
consists in planning demands of connection over a period of 1 year. A new demand is accepted if both bandwidth
and Quality of Service (QoS) requirements are satisfied. Demands are not known prior to the assignment and must
be performed on-line according to their arrival. Moreover, the acceptance or the reject of a demand must be decided
within a given time of 1 min.

First, we look for a route satisfying the new demand. In case of failure, we try to reroute some already accepted
connections in order to satisfy this new demand. Rerouting has been modelled as a Weighted Constraint Satisfaction
Problem (WCSP) and solved by VNS/LDS + CP, a hybrid method well suited for solving WCSPs in on-line contexts.
Experiments show that our rerouting enables to accept an average of 67% of demands that would be rejected
otherwise.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Network routing; ATM; Quality of service; Dijkstra shortest path algorithm; Anytime context; Constraint
satisfaction problem; WCSP; Hybrid search algorithm; VNS; LDS

1. Introduction

The up-coming Gbps (Giga bits per second) high speed networks are expected to support a wide
range of real-time multimedia applications. The requirement for time delivery of digitized audio-visual

∗ Corresponding author.
E-mail addresses: loudni@iutc3.unicaen.fr (S. Loudni), patrice.boizumault@info.unicaen.fr (P. Boizumault),

philippe.david@emn.fr (P. David).

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.01.016

http://www.elsevier.com/locate/cor
mailto:loudni@iutc3.unicaen.fr
mailto:patrice.boizumault@info.unicaen.fr
mailto:philippe.david@emn.fr

2892 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

information raises new challenges for the next generation integrated-service broadband networks. One of
the key issues for these newly emerged architectures is Quality of Service (QoS) routing, i.e., computing
paths that satisfy a set of end-to-end QoS requirements. In this case, the objective of QoS routing is
two-fold: (1) to find a suitable route which fulfills the demand’s requirements, (2) to optimize the network
resource allocation.

In this paper, we present an application we developed for France Telecom R&D. This application takes
place in an Asynchronous Transfer Mode (ATM) network administration context, and is very close to a
QoS routing problem. The problem consists in establishing connections, i.e., assigning routes to demands
respecting QoS requirements and thus reserving necessary resources. Demands are planned over a period
of 1 year. But demands are not known prior to the assignment and must be performed on-arrival in an on-
line context. Moreover, when no route (respecting the QoS requirements) can be found for a demand, we
allow rerouting of some connections that have already been established. If rerouting fails, the connection
is blocked and the demand will be rejected.

Since routes are computed on-line as demands arrive, there is an additional delay in connection setup.
This delay may be significant because computing a route satisfying multi-QoS criteria is often an NP-
Complete problem (see Section 7). For these reasons, FT R&D has limited the amount of time spent
searching for a route to one minute. Thus, accepting/rejecting a demand must be performed in at most 1
min.

This paper describes a rerouting-based approach for solving this problem. Rerouting is achieved in
two main steps: computing a set of demand conflicts (see Section 4) and repairing these conflicts (see
Section 5).

The aim of the first step is to find a route for a demand (without rerouting) or, in case of failure, to
compute a set of demand conflicts. These demand conflicts are generated from a set of conflicting shortest
paths,1 provided by an extended Dijkstra’s algorithm (EDSP).

In the second step, for each demand conflict, a Weighted Constraint Satisfaction Problem (WCSP),
restricted to the area of the network where connections have to be rerouted, is built and then solved
using a hybrid search method VNS/LDS + CP [1,2]. WCSPs corresponding to various demand conflicts
are successively treated. If a solution to one WCSP is found (within less than 1 min), the demand will be
accepted. If not, the demand will be rejected.

VNS/LDS + CP is a hybrid method [2] for solving constraint optimization problems formulated as
WCSP (Weighted CSP). It combines a Variable Neighborhood Search [3] and a Limited Discrepancy
Search [4] with Constraint Propagation to efficiently guide the search.

Experimental results for real life ATM network topologies and sets of demands provided by France
Telecom R&D show that rerouting with VNS/LDS+CP enables to accept an average of 67% of demands
that would be rejected by a greedy algorithm without rerouting [5].

The paper is organized as follows: first, we describe resource allocation in ATM networks, characterize
the rerouting problem and review different approaches for solving it; then, we present the two main steps
of our approach: computing the set of demand conflicts and rerouting using VNS/LDS + CP; next, we
give an example, review some related works and present experimental results. Finally, we conclude with
future works.

1 A path p is in conflict with a demand d if d requires too much bandwidth on at least one link l of p, more precisely on at
least one time interval on l.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2893

2. Resource allocation in ATM networks

The EOLE project is a RNRT (Réseau National de Recherche en Télécommunications) project sup-
ported by the French Research Office. The aim of the project2 is to solve on-line telecommunications
combinatorial problems using Constraint Programming [6]. The application, we describe in this paper, is
the second pilot application of the EOLE project.

Section 2 is organized as follows: first, we describe ATM technology; then, we introduce quality of
service and metrics and consider them more specifically forATM networks; finally, we present connections
reservation for ATM networks.

2.1. ATM technology

In asynchronous transfer mode (ATM) networks, multiplexing and switching are performed on 53-byte
cells. Two levels of cell forwarding are defined: virtual path (VP) and virtual channel (VC), which use
the virtual path identifier (VPI) and virtual channel identifier (VCI) fields in the cell header, respectively
[7]. According to such hierarchical structure, a collection of VP links (or physical links) form a virtual
path connection (VPC) whereas a set of VC links identify a virtual channel connection (VCC) on which
cells are transported across the network.

ATM is connection oriented. Once the route has been chosen, a virtual connection is set (connection
set-up) before information is transferred from the terminal to the network. This establishment includes
the allocation of a VCI and/or VPI, as well as the reservation of required bandwidth resources for links
forming the route, in order to ensure the QoS.

The mechanism that is responsible for accepting or rejecting a connection request is called Connection
Admission Control (CAC). It uses rules that depict bandwidth constraints to satisfy in order to route a
demand on links. According to these rules, the CAC will determine whether a connection can be set up
satisfying the requested QoS while maintaining the QoS of all the other connections (see Section 2.3).

2.2. Quality of Service and metrics

As defined in [8], Quality-of-Service (QoS) is a measurable level of service delivered to network users,
which can be characterized by parameters such as packet loss ratio, available bandwidth, end-to-end delay,
route length, etc. Such QoS can be provided by network service providers in terms of some agreement
(Service Level Agreement, or SLA) between network users and service providers.

Service requirements have to be expressed in some measurable QoS metrics. Well-known metrics
include bandwidth, delay, jitter, cost, loss ratio, etc. There are three kinds of metrics [9]: additive ones,
multiplicative ones, and concave ones. They are defined as follows:

Let P = (l1, l2, . . . , lk) be a path of length k, where l1, . . . , lk represent network links.

• m is additive, if m(P) = m(l1) + m(l2) + · · · + m(lk),
delay, jitter, cost and route length are additive metrics.

• m is multiplicative, if m(P) = m(l1) ∗ m(l2) ∗ · · · ∗ m(lk),
loss ratio is a multiplicative metric.

2 See http://www.lcr.thomson-csf.com/projets/www_eole.

http://www.lcr.thomson-csf.com/projets/wwwprotect LY1	extunderscore eole

2894 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

• m is concave, if m(P) = min{m(l1), m(l2), . . . , m(lk)},
an example is bandwidth: the available bandwidth of a path is the minimal available bandwidth of its
links.

2.3. QoS in ATM network

ATM networks support multiple service classes (ATCs: ATM Transfert Capacity), with different QoS.
For this problem, we consider only two service classes [10], CBR and VBR:

• CBR (Constant bit rate): for applications where bandwidth requirement is constant over the duration
of a connection; the fixed value is specified in the connection contract and corresponds to the highest
peak (PCR: Peak Cell Rate).

• VBR (Variable bit rate): for applications where bandwidth requirements can vary during the lifetime of
a connection; for ATM networks, VBR is described by three parameters: the peak cell rate (PCR), the
sustainable cell rate (SCR), which is an upper bound on the realized mean cell rate of the connection,
and the maximal burst size (MBS) [11].

According to the service he needs, the user selects one of the two ATCs. The associated CAC (Connec-
tion Admission Control) rule is applied to control demands admission and resources allocation. Inequality
(1) is the CAC implemented by France Telecom [12]:

for each link of capacity C:
∑

PCRAT C=CBR +
∑

SCRAT C=V BR < C. (1)

Thus, only two traffic parameters are actually used for connections reservation. Moreover, with such
a rule, either the first or the second parameter is taken into account, according to the ATC chosen by the
user.

2.4. Connections reservation for ATM networks

In this section, we present the specificities of the ATM framework provided by France Telecom R&D.

2.4.1. Connections reservation service
In ATM networks, three tasks have to be performed by the network manager:

• equipments follow-up, which concerns the network infrastructures.
• connections set-up on equipments, which is performed by the service manager attached to the equip-

ments.
• treatment of demands, i.e., computing resources availability in order to decide whether a new demand

can be accepted, possibly at the cost of rerouting of some already accepted connections.

In this application, to enable reservations, we are only interested in the global computing of resources
availability.

For ATM networks, real-time routing is done by signalling with PNNI3 [13], a hierarchical and
dynamic link-state routing protocol. This is based on routing table, and on a local and partial knowledge.

3 Private network-to-network interface.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2895

10

15

20

Week 1

W
e

12
H

W
e

24
H

T
hu

 0
H

T
hu

 1
2H

Fr
i 0

H

Fr
i 2

4H

Mb/s

Fig. 1. Calendar for C2.

In our case, a centralized system enables us to order equipments to establish a connection, under the
control of an operator, and signalling is only limited to provide a guaranteed QoS on the selected path
for a connection.

2.4.2. Communication network
ATM networks are constituted of nodes and communication links; links are characterized by their

bandwidth capacity. ATM networks are multi-graphs 〈N, E〉: for security reasons, several links may
exist between two nodes. Nodes (N) represent routers and hosts. Edges (E) represent communication
links. As links are asymmetric, each link is represented by two directed edges in opposite directions.

Each demand d is defined by:

• a source node (s) and a destination node (t),
• an ATM Transfer Capacity parameter, depending on the required QoS,
• a traffic calendar.

Depending on the service he needs, the user chooses one ATC. For each ATC, rules depict bandwidth
constraints to satisfy in order to accept the demand on links (see inequality (1)). The traffic calendar
describes the traffic characteristics, such as a starting date, debit of the traffic and periodicity. Debit of
the traffic is at least 1 h and is divided into quarters. As reservations are planned for a year, 35,000 slots
of time have to be considered for the whole planning.

The user asks for a non-permanent connection, during at most one year. The required traffic must be
constant on every time interval, and may be periodic. For example, one can ask for those calendars:

• periodic (C1): 45 Mb/s every day, from 6.15 a.m. to 8.15 p.m.;
• non-periodic (C2): week 1, 15 Mb/s on Wednesday, from noon to midnight, 20 Mb/s on Thursday,

from midnight to noon, and 10 Mb/s on Friday, all day long (see Fig. 1);
• continuous (C3): 50 Mb/s.

2896 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

Several connections may be routed through a same link. But, because of technological limitations,
it is impossible to share a connection among multiple routes (mono-routing). Retained QoS parameters
are capacity and route length. Capacity is a concave metric per slot of time, whereas route length is an
additive one. The length of a route is defined as the number of links constituting it.

2.4.3. Rerouting in ATM networks
The aim of our application is to find a route for each new demand; such a route must fulfil QoS

requirements and must be found within the allowed computing time. Rerouting is achieved in two main
steps: computing a set of demand conflicts and repairing these conflicts.

Step 1 tries to find a route for the demand (without rerouting). In case of failure, step-1 computes a set
of demand conflicts from conflicting shortest paths. Each demand conflict represents a sub area of the
network where rerouting can be performed. If a rerouting attempt succeeds within the allowed computing
time, the demand will be accepted. If not, the demand will be rejected.

In ATM networks, rerouting cannot be carried out during a time slot where a connection is active, i.e.,
its debit is not null.

Our main optimization criterion is to maximize the number of accepted demands on the network. We
will also take into account secondary criteria when we look for solutions:

• minimizing the number of rerouted connections (we are looking for stable solutions),
• minimizing the global length of routes (we are looking for shortest paths),
• balancing the network availabilities, in order to avoid over-loaded links.

3. Retained approach

In this section, we motivate the main choices of our approach. First, we propose an efficient time
representation. Then, we characterize the rerouting problem and review different approaches for solving
it. Finally, we present the two main steps of our approach:

1. We look for a non-conflicting shortest path. If there exists such a path, the demand is accepted. If not,
for each conflicting shortest path, a demand conflict is computed.

2. We try to successively reroute demand conflicts formulated as WCSP. If a solution to one WCSP is found
within the time assigned to handle a demand (1 min), the demand will be accepted. If not, the demand
will be rejected.

3.1. Efficient time representation

One important difficulty comes from the duration of the planning. Indeed, to reserve a connection over
a time period divided into n time slots, would require to solve n routing problems. As the number of time
slots to consider is prohibitive (a year corresponds to 35,000 quarters of an hour), it is absolutely vital to
have an effective and compact time representation.

In [12], a hierarchical structure close to Bryant’s Binary Decision Diagrams [14], and called RNT
(Restricted N_ary Tree), has been proposed to represent the time dimension as a compact tree. Superfluous
data due to periodic demands are suppressed by creating a hierarchical level for each type of periodicity.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2897

Year

Week

Day

Hour

2

0

0 12 0 012

1 3 4 5 6

15 20 10

0

0

0

1

0

Fig. 2. Representation by RNT of calendar C2.

Superfluous data due to long constant slots are suppressed by gathering together consecutive and similar
subtrees. Fig. 2 presents such a modelling for calendar C2.

We have used this structure to represent the traffic calendar of a demand, as well as the availability of
a link. Several new operators on RNT have been defined in order to determine availability of links and to
update their bandwidth capacities.

3.2. Characteristics of the problem

• This problem is dynamic: availability of network resources evolves with time. Due to rerouting, we
have to reconsider routes of some already accepted connections. We look for stable solutions (by
carrying out a few modifications for routes of rerouted connections).

• This is an anytime problem: a solution has to be computed within a given time (less than 1 min per
new demand). Afterwards, the demand will be rejected. Section 3.3 describes more precisely anytime
algorithms.

• This is a hard problem, due to the complexity of routing several demands. Moreover, allocating a
single demand under multiple additive or multiplicative metrics has been proved to be NP-complete
by itself [9].

• This is a large-scale problem, especially on its time dimension. Currently, reservations are planned
over a period of 1 year, divided into quarters (35,000 time slots). The size of the network is about 100
nodes, 800 links, and 700 connections to be routed for a year.

3.3. Anytime algorithms

The term anytime algorithm was coined by Dean and Boddy in the mid-1980s in the context of their
work on time-dependent planning [15]. Contrary to a standard algorithm, where no result is available
until its ending, an anytime algorithm can be stopped, at “any time”, to provide a solution. Moreover, the
quality of the computed solutions must increase over time. There are two kinds of anytime algorithms,
namely, interruptible and contract ones [16]. A contract algorithm requires that the computing time must
be known prior to its activation.

2898 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

4000

5000

6000

7000

8000

9000

10000

11000

12000

0 100 200 300 400 500 600

CPU time in seconds

A
ve

ra
ge

 c
os

t

 Quick SA

 Medium SA

 LNS/CP/GR 40%

VNS/LDS+CP(PFC-DAC)

Fig. 3. Comparing performance profiles on the instance 6 of the Radio Link Frequency Assignment Problem
(RLFAP—minimization).

Performance profiles describe the evolution of the solution quality as a function of the computing time.
If anytime algorithms always improve the quality of the computed solution upon time, the behavior of
such algorithms, at the first time instants, is crucial. A performance profile is particularly interesting if
quality of solutions augments very quickly at the beginning of the execution. Then, the improvement can
decrease progressively.

To illustrate this important property of anytime algorithms, Fig. 3 compares the performance profiles
of four methods, obtained on the instance 6 of the Radio Link Frequency Assignment Problem (RLFAP).
It consists of assigning a limited number of frequencies to radio links while minimizing electro-magnetic
interference constraints due to the re-use of frequencies [17].

These methods are VNS/LDS + CP, LNS/CP/GR [18], another hybrid method which also relies on
solving WCSPs, and two standard versions of Simulated-Annealing (SA): Quick and Medium. We can
note the good performance profile of our method (VNS/LDS + CP) compared with those of SA and
LNS/CP/GR.

3.4. Hybrid methods

Four main categories of methods could be used to solve this problem:

1. Systematic constructive methods, based upon backtracking or branch and bound techniques. These
methods are complete and could provide an optimal solution, but they may be very time consuming.
Constraint programming can be classified in this category.

2. Local search methods start from an initial solution (often randomly generated). From this initial
solution, exchanges between components are achieved and results are evaluated. The exchange leading

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2899

to the best solution is retained and the procedure continues until a stopping test. The exchange process
depends on the method (e.g., simulated annealing [19,20], tabu search [21,22], repair-based methods
[23,39]) and the neighborhood system used. The choice of a neighborhood generating mechanism
should be driven by the structure of the problem.

3. Greedy methods construct a solution from scratch with no backtracking mechanism. These methods
are obviously very fast, but they can be used only on problems with very specific properties.

4. Hybrid methods, can be obtained by combining constructive methods (either systematic or not) and
local search methods [24–27].

Systematic constructive methods could not be used because of the on-line context and of the size of
the problem. Hybrid methods [2,44] usually provide appropriate compromises between complete and
local search. More precisely, they can be very efficient by combining the advantages of both constraint
propagation and opportunistic exploration of the search space (local search).

VNS/LDS + CP is a hybrid method where problems are formulated as WCSP (Weighted CSP). It
combines a Variable Neighborhood Search [3] and a Limited Discrepancy Search [4] with Constraint
Propagation to efficiently guide the search. As any hybrid method, VNS/LDS + CP will always improve
the quality of the computed solution upon time.

Moreover, as VNS/LDS + CP provides valuable performance profiles (see the resolution of CELAR
problems [2]), it appeared to be well suited for solving our rerouting problem.

3.5. Overview of the resolution method

Rerouting is achieved in two main steps: computing a set of demand conflicts and repairing these
conflicts. When a new demand d arrives, step-1 tries to get a route for d (without any rerouting). If such
a route r can be found, r will be the route associated to d. If not, step-1 returns a set of demand conflicts.
These demand conflicts are generated from a set of conflicting shortest paths, provided by an extended
Dijkstra’s algorithm (EDSP).

In the second step, for each demand conflict, a weighted CSP (WCSP), restricted to the area of the
network where connections have to be rerouted, is built and then solved using VNS/LDS + CP [1,2].
WCSPs corresponding to various demand conflicts are successively treated. If a solution to one WCSP is
found (within the time assigned to handle a demand, i.e., 1 min), the demand will be accepted. If not, the
demand will be rejected.

Section 4 will be devoted to the computation of conflicting shortest paths (using the EDSP algorithm)
and demand conflicts. In Section 5, we recall the definition of the valued CSP framework (VCSP) [28].
Then, we show how to formulate each demand conflict as a WCSP restricted to the area of the network
where connections have to be rerouted. Finally, we detail how rerouting is performed using our hybrid
search method.

4. Computing demand conflicts

In this section, after introducing the necessary definitions, we describe how the problem of determining
a subset of the demands to be rerouted (i.e., demand conflicts) is formulated and solved using an extension
of Dijkstra’s shortest path algorithm (EDSP).

2900 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

4.1. Conflicting shortest path and demand conflict

Definition 1 (Violated link of a path for a demand). A link l of a path p is said to be violated for a demand
d iff its available (remaining) amount of bandwidth is insufficient to accept d (i.e., the capacity constraint
for link l would not be verified).

Definition 2 (Conflicting path of order k). Conflicting paths of order k for a demand d, are paths with
exactly k violated links.

w1 and w2 are two additive weight functions. We note w1-weight (resp. w2-weight) the w1(p) (resp.
the w2(p)) of a path p. w1 denotes the capacity violation on a link l, whereas w2 represents the length of
a path p.

w1(l) =
{

1 if l is a violated link,

0 otherwise.

For a path p = (l1, . . . , lq), w1(p) = ∑q
i=1 w1(li). Let Path(s, t, k) be the set of all conflicting paths

from s to t of order k, we thus have:

Path(s, t, k) = {p|p path from s to t, and w1(p) = k}.
Definition 3 (Conflicting shortest path of order k). Conflicting shortest paths of order k are paths of
smallest w2-weight, among conflicting paths of order k, �(s, t, k) denotes the shortest length of these
paths between s and t :

�(s, t, k) = min
p∈Path(s,t,k)

{w2(p)}.

Definition 4 (Conflicting shortest path problem: CSPP). Given G〈N, E〉 a directed graph, a source node
s, a destination node t, two weight functions w1: E → N and w2: E → N, a constant maxLinks ∈ N;
the problem denoted CPP: 〈G, s, t, w1, w2, maxLinks〉 is to find a set of paths p from s to t such that
w1(p)�maxLinks and w2(p) minimal.

maxLinks4 is the maximal number of admitted violated links per path. For a demand d,NotOKrouteSet
is the set of all conflicting shortest paths of order k (for each k�maxLinks). For each conflicting short-
est path NotOKroute ∈ NotOKrouteSet, a demand conflict, corresponding to the sub-area of the
network where connections have to be rerouted, is computed.

Definition 5 (Demand conflict). A demand conflict for a conflicting shortest path NotOKroute is a
quadruple 〈d, NotOKroute ,Cl ,Cc〉, where:

• d is the demand,
• NotOKroute is a possible route for d,
• Cl is the set of violated links of NotOKroute ,
• Cc is a set of conflicting connections we need to reroute in order to accept d.

4 If at least one metric takes bounded integer values, the CPP problem can still be solved in a polynomial time.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2901

4.2. Extending Dijkstra’s algorithm

We have extended Dijkstra’s shortest path algorithm (EDSP, Algorithm 1) in order to solve the CSPP
problem defined in Section 4.1.

Consider a directed graph G = (N, E) with number of vertices N and number of arcs M. Let w1 and
w2 be the two weight functions defined in 4.1 (w1(p) is the number of violated links of path p and w2(p)

is the length of path p. maxLinks is the maximal number of admitted violated links per path: for each path
p, w1(p)�maxLinks).

For each node u ∈ N, and each integer k ∈ [0 . . . maxLinks], the variable d(k)[u] is an estimation
of the smallest w2-weight, from source node s to current node u, of conflicting paths of order k (their
w1-weight equals to k). Let us note �(s, u, k) the shortest distance for those paths, we then have:

�(s, u, k) = min
p∈Path(s,u,k)

{w2(p)}. (2)

2902 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

Initially, for every node u and for each k ∈ [0 . . . maxLinks], d(k)[u] is initialized to +∞. For each
pair 〈u, k〉, the path from s to u is stored in the variable �. �(k)[u] keeps the immediate predecessors of u
on the path. The algorithm starts by setting d(0)[s] to 0, and �(0)[s] to −1 (see function initialize,
Algorithm 2).

During its execution, EDSP updates estimate distances d(k)[u]. When the algorithm ends, we have
d(k)[u] = �(s, u, k), for each u ∈ N, and each k ∈ [0 . . . maxLinks]. We obtain a set of conflicting
shortest paths p∗ of order k, k�maxLinks. Hence, each path p∗ can be retrieved by tracing � from
destination t, till reaching source s.

The algorithm also maintains two additional sets, S et H. S contains all pairs 〈u, k〉, such that d(k)[u]
equals to �(s, u, k) (i.e., the shortest distance of conflicting paths from s to u of order k). H contains all
remaining pairs, such that d(k)[u] is greater than �(s, u, k). Initially, S is set to ∅ and H to {〈s, k〉 | k=0}.
In the while loop (lines 1–8 of Algorithm 1), each iteration moves a pair 〈u, k〉 from H to S and updates
estimate distances of vertices that are adjacent to u by calling scan(u,k,v) (see Algorithm 2). For
every (u, v) ∈ E, such that d(k)[u] + w2(u, v)�d(k)[v], we update d(k)[v] and �(k)[v].

The algorithm ends when (H=∅) or ending condition of lines (5–6, Algorithm 1) is reached, and EDSP

returns a set of conflicting shortest paths of order k, for 1�k�maxLinks.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2903

4.3. Computing and ordering demand conflicts

Given maxLinks, computing the set of demand conflicts for a demand d is performed in three steps:

1. EDSP computesNotOKrouteSet, the set of all conflicting shortest paths of order k, for k�maxLinks;
2. Redundant conflicting shortest paths are removed from NotOKrouteSet;
3. For each remaining conflicting shortest path p, its associated demand conflict (〈d,p,Cl ,Cc〉) is then

computed:

• Cl is the set of the violated links of p (given by EDSP).
• Cc is a set of conflicting connections we accept to reroute in order to admit d. To compute Cc, we

have to determine, for each link l ∈ Cl , a set of (candidate) connections that share at least one
common slot of time with the calendar of d.

As a consequence, we often obtain too many connections: although some of them can be unnecessarily
rerouted, we order them according to their decreasing number of violated links and their decreasing
capacity. Connections to be rerouted are then selected according to this ordering, till all links of Cl

becomes non-conflicting. In such a way, we prevent unnecessary rerouting of some connections, even if
they share one slot of time with d.

Demand conflicts are ordered according to the two following criteria:

• their number of connections to be rerouted (we are looking for stable solutions),
• their capacity, defined as the sum of capacities of all connections to be rerouted.

Such an ordering try to manage first the easiest or the most appropriate demand conflict. Moreover, this
ordering enables to take into account some secondary optimisation criteria like minimizing the number
of rerouted connections and globally balancing the network load.

5. Rerouting using VNS/LDS + CP

Let conflictSet be the set of demand conflicts computed during the first step. For each demand
conflict in conflictSet, a weighted CSP (WCSP) (restricted to the area of the network where connec-
tions may be rerouted) is built. WCSPs, corresponding to various demand conflicts, are successively solved
by VNS/LDS + CP. If a solution for one WCSP is found within the allowed computing time, the demand
is accepted. If not, the demand will be rejected.

In this section, VNS/LDS+CP [1,2] will be presented through its application to the rerouting problem.
More details concerning VNS/LDS + CP and comparisons with other competing methods (e.g., local
searches) on the CELAR benchmarks can be found in [2].

First, we recall the definition of the valued CSP framework (VCSP) [28]. Then, we show how to associate,
to each demand conflict, a weighted CSP restricted to the area of the network where connections have to
be rerouted. Finally, we detail how rerouting is performed using VNS/LDS + CP.

2904 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

5.1. Valued constraint satisfaction problems

The Valued CSP (VCSP) [29,28] framework is an extension of the CSP (Constraint Satisfaction Problem)
framework, which allows to deal with over-constrained problems or preferences between solutions.

A CSP is defined as a triplet (V,D,C), where V is a set of variables, D a set of finite domains associated
to the variables and C a set of constraints between the variables. A VCSP is a CSP extended with a valuation
structure S and a valuation function �. The valuation structure S is a triplet (W, �, ⊗), where W is a
valuation set, � a total order on W, and ⊗ a binary operation closed on W. The valuation function �,
defined from C to W, associates a valuation to each constraint; the valuation of a constraint denotes its
importance.

Let A be an assignment of all the variables and Cunsat(A) be the set of the constraints unsatisfied by A.
The valuation of A is the aggregation of the valuation of all the constraints in Cunsat(A): �(A) = ⊗�(c)

for c ∈ Cunsat(A).
The objective is to find a complete assignment with minimum valuation. In this paper, we retained the

weighted CSP sub-framework � (the aggregation operator ⊗ is the sum). From an algorithmic point of
view, WCSPs are generally the most difficult to solve [28].

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2905

a1 (1,3)

a4 (1,2) a5 (2,1)

a2 (2,2)

a8 (3,3) a9 (4,2)

a10 (5,1)

a3 (3,1)

a7 (2,4)

A

B D

E
C

I

F G H

a6 (1,5)

a1

a4 a5

a2

a8 a9

a3

a7

A

B D

E
C

I

F G H

NULL
a6

v1,2

v1,4

v1,3

a10

(n1= 4)

v1,1

(a) (b)

Fig. 4. An example of domains building for a demand between A and E. (a) Double labeling, (b) domains.

5.2. Building weighted CSPs

Each demand conflict contains a set of connections to be rerouted. Now the problem is: given a set of
connections ci ∈ Cc to be rerouted, find a new (non-conflicting) route for each ci . This problem has been
formulated as a WCSP [28].

5.2.1. Variables, domains and constraints
Each variable of set V describes which link is allocated for a rerouted connection at a certain position

on its route. That is why, for each connection ci , we introduce ni variables, vi,1, vi,2, . . . , vi,ni
, where ni

is the maximal size of the route admitted for ci . The maximal size ni takes into account the size of the
shortest path for ci , and a “freedom degree” �, which expresses how much ni can be greater than the
shortest size.

The domain Di,j of each variable vi,j is a set of links. First, for each rerouted connection ci , a double
labelling is computed for every link of the network, that indicates how far a link stands from source
and from destination. Then, thanks to this double labelling, we can limit initial domains of variables by
keeping only those links that are on correct routes, as defined below:

Di,j = {l ∈ E|j − ��distFromSrc(l)�j and

ni + 1 − ��distFromSrc(l) + distFromDest(l)�ni + 1}.
A NULL value is introduced in some domains to represent routes shorter than ni . Fig. 4 shows an

example of domains building for a demand between A and E, with � = 1.
There are two kinds of constraints in C: connectivity constraints, between two consecutive variables

vi,j and vi,j+1 of a same connection ci , and capacity constraints, over variables created for distinct
connections which share at least one common link. Connectivity constraints respect the topology of the
network, while capacity constraints express the satisfiability of bandwidth requirements.

5.2.2. Modelling as a WCSP
This CSP cannot be solved using systematic constructive methods because of the on-line context and

of the size of problem (3.4). So, we have re-formulated this satisfaction problem as an optimization one
in order to apply our method.

2906 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

Capacity constraints will be considered as hard constraints. Connectivity constraints will be managed
as soft constraints all having the same valuation. Propagation of soft constraints will allow us to prune the
search tree and to determine an appropriate ordering heuristic on values (see Sections 5.3.6 and 5.3.7).

The objective is to minimize the sum (�) of valuations of the violated constraints; we look for solutions
such that all constraints are satisfied.

5.3. Rerouting with VNS/LDS + CP

VNS/LDS + CP is basically a local search method (see Algorithm 4) which dynamically adjusts the
neighborhood sizes, when the current solution is a local optimum. This choice will partially remedy to
the weaknesses of pure local search methods (Simulated Annealing, Tabu Search). Indeed, the more the
neighborhood is potentially large, the more there are chances that it contains good solutions and thus
improves quickly the current solution. However, as neighborhoods grow larger, finding the best neighbor
may require a too expensive computational effort. That is why we have selected the LDS partial search,
combined with Constraint Propagation, to efficiently explore these neighborhoods.

The algorithm starts with an initial complete assignment s∗; then, at each move, it relaxes (or unassign
variables) a large part of the current solution s and then rebuilds it (or reassign variables) by selecting
the best neighbor that strictly improves the cost of the current solution. The algorithm ends when the
maximal number of local moves (MAXMOVES) has been reached.

LDS (Limited Discrepancy Search, see Section 5.3.5) explores the neighborhood defined by the relaxed
part of the solution. It benefits from Constraint Propagation based on lower bounds computation, and
on static and dynamic heuristics for variable and value ordering, respectively. Moreover, only judicious
neighborhoods, related to unsatisfied constraints, are considered. Such a choice prevents LDS from
modifying the value of variables appearing in satisfied constraints.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2907

5.3.1. Building the initial assignment
The initial assignment used by VNS/LDS + CP, is built as follows: variables introduced for each

connection are first instantiated to their previous values (i.e., links of the previous route), if they appear in
their domains. Otherwise, a NULL value is preferred, but if it does not exist we choose randomly among
values of their domains. Such a choice enables to build an initial good solution in terms of stability (by
instantiating first to the previous value) and path length (by instantiating first to the NULL value).

5.3.2. Relaxing variables
Algorithm 5 describes how to select variables to relax, according to strategy Str. The function of line

(1) computes the set � of all currently violated constraints. To constitute rel (set of variables to be relaxed),
constraints are randomly chosen in � and their variables are added to rel until the current neighborhood
size is reached (card(rel)= size). This choice enables a balance between choosing variables according to
a specific strategy or completely at random. Experiments have shown that introducing some randomness
enables the search to escape more quickly from local minima.

2908 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

Iteration 0 : discrepancy = 0

Iteration 2 : discrepancy = 2

Iteration 1 : discrepancy = 1

Iteration 3 : discrepancy = 3

Fig. 5. Principle of LDS on n-ary tree.

5.3.3. Control of the neighborhood size
Initially, the neighborhood size (size) takes a minimum value. To control the neighborhood size, different

strategies have been implemented. The best strategy we have found, increases systematically size by one,
each time the method does not improve the cost of the current solution.

5.3.4. Rebuilding a solution
Algorithm 5 defines the function Rebuild. The global variables ub and lb record the upper and

lower bounds of the problem optimum. ChooseVariable and SortDomain define respectively
static ordering for variables and dynamic ordering for values. LB(s, xi) computes a lower bound of the
subproblem, limited to the variables after i. discrep sets the maximal number of choices that we can
diverge from the heuristic (discrepancies).

5.3.5. Limited discrepancy search
The principle of LDS [4] is to explore heuristically good solutions that might be at a limited distance

from a greedy solution. LDS ensures a more balanced exploration of the search tree, and speeds up the re-
construction step. LDS starts from the solution computed by the value heuristic, and successively explores
solutions by increasing the number of discrepancies, until the fixed maximal number of discrepancies is
reached.

We have used a generalized version of LDS on n-ary trees. Fig. 5 shows the paths (in bold) explored by
our version of LDS. The discrepancy is measured according to the rank of the value chosen for a variable
with respect to the order given by the heuristic on values. We count a single discrepancy for the second
cheapest value of one variable, two discrepancies for either the third cheapest value of one variable, or
the second cheapest values of two variables, and so on. We only perform one iteration of LDS, with a
fixed number of discrepancies. This prevents to re-visit leaf nodes.

5.3.6. Constraint propagation
One of the main strengths of our approach lies in the use of Constraint Propagation to prune useless

sub-trees, but also to guide the choice of values during the reconstruction, while keeping this step fast

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2909

enough. At the beginning, we make the connectivity constraints arc-consistent. During the resolution, at
each node of the search tree, lower bounds are computed in order to locally exclude all partial solutions
which cannot lead to complete assignments of better valuation than the current best solution. These lower
bounds are computed with Partial Forward Checking + Directed Arc Consistency (PFC–DAC) algorithm
[30]. Only soft constraints are taken into account for computing lower bounds.

Because of the time dimension (35,000 slots of time), verifying capacity constraints is much more
expensive than lower bounds computation on connectivity constraints. So, we have retained a weaker
consistency for capacity constraints. As a connection cannot use a link twice, the result of capacity test
on a variable vi,j does not depend on instantiated variables vi,k, k < j , but only on instantiated variables
vl,h, l
= i, of other connections. So, if the capacity constraint fails when vi,j is instantiated to a, it is
removed from all the domains of uninstantiated variables vi,k (k > j). To prevent redundant search a is
also removed from the domains of instantiated variables vi,l (l < j). Deleted values are only restored
when backtracking is performed to a variable of an older connection.

5.3.7. Heuristics
Our variable ordering first takes variables created for the connection of the largest capacity, breaking

ties by the largest connection in number of variables. To yield a profit from the connectivity constraints
structure, we select variables of each connection from destination to source.

Constraint propagation, based on PFC–DAC algorithm, allows us to use a dynamic minimum incon-
sistency count value ordering. During search, for each value, so-called Inconsistency Counts (ic) and
Directed Arc Inconsistency counts (dac) which memorize the look-ahead effects of an assignment over
the uninstantiated variables, are computed. Variables are instantiated first to the NULL value (we prefer
shortest paths). Then values are selected by their increasing ic + dac, breaking ties by the least loaded
link.

6. Study of an example

6.1. Description

To illustrate our method, we present the resolution of a small subproblem. Time dimension is restricted
to three slots of time, and we note (b1, b2, b3) a calendar, where b1, b2 and b3 are the bandwidth capacities
required for each slot. For each demand, we only consider conflicting shortest paths with at most one
violated link (maxLinks = 1). Moreover, when rerouting occurs, we only build routes whose size is equal
to the shortest size, or routes having one additional link (� = 1). For simplicity reasons, we use an
undirected graph. Three connections have already been allocated in the network, as described in Fig. 6a.

• c1, between A and E, has for calendar (0, 5, 5), and for route (a4, a5).
• c2, between I and E, has for calendar (0, 4, 0), and for route (a6, a4, a5).
• c3, between A and D, has for calendar (5, 0, 0), and for route (a1, a2).

Each link has for label its name (ai), its capacity, and its current reservations (a matrix with a line per
connection and a column per slot of time).

2910 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

A

B D

E
C

I

F G H

0 0 0
0 0 0

a2,10

A

B D

E
C

I

F G

H

0 0 0
0 7 0

a7,5

A

B D

E
C

I

F H

0 0 0
5 0 00 0 0

0 4 0

0 0 0
0 7 0 0 0 0

0 4 00 0 0
0 4 0

0 0 0
0 4 0

0 5 5
0 4 0

0 5 5
5 0 0

0 5 5
5 0 0

0 5 5
0 0 0

0 0 0
0 4 0

0 0 0
5 0 0

0 5 5
0 4 0

0 0 0
5 0 0

0 0 0
5 0 0

0 0 0
0 7 0

0 0 0
0 7 0

a2,10

a6, 5
a1, 10

a4, 20 a5, 10

a8,5 a9,5G

a10, 5

a3, 6

a2, 10

a6, 5
a1, 10

a3, 6

a10, 5

a8, 5 a9, 5

a7, 5

a4, 20

a6, 5

a3, 6
a1, 10

a4, 20

a7, 5
a8, 5

a9, 5

a5, 10

a10, 5

a5, 10

(a)

(b) (c)

Fig. 6. States of the network. (a) Initial state of the network, (b) for a conflict Cf1, (c) final network.

6.2. Arrival of a new demand

Let us suppose that a new demand requires a connection between A and E, with a calendar (0, 7, 0).
This demand cannot be accepted without rerouting. . .

6.3. Selecting demand conflicts

The only conflicting shortest path, computed by EDSP, is r1 = (a4, a5). No other conflicting shortest
path exists for this demand, since links a3, a6 cannot support the required capacity of the second slot
(i.e., capacity b2 of the calendar). The only violated link on route r1 is a5: it supports connections c1 and
c2. Calendar of both connections are in conflict with the demand, so, we have one demand conflict: cf 1,
composed of the route r1, violated link a5, and conflicting connections c1 and c2.

6.4. Rerouting with VNS/LDS + CP

To solve the demand conflict cf 1, we first remove connections c1 and c2, and consider that the demand
is accepted on the route r1. The associated network is depicted in Fig. 6b.

By taking into account the availability of links, we find a shortest route of three links for c1. As freedom
degree is one, the maximal size of the route admitted for c1 is four. So, we introduce four variables: v1,1,
v1,2, v1,3 and v1,4 for c1. c2 has got a shortest route of four links. As freedom degree is one, the maximal
size of the route admitted for c2 is five. So, we introduce five variables: v2,1, v2,2, v2,3, v2,4 and v2,5 for
c2. The cost variable PENALTY records the sum of valuations of the violated constraints.

Double labelling is computed for each link, and according to it, the link may belong to a domain or
not. We have detailed domains building for the connection c1 in Fig. 4. Finally, variables and their initial

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2911

v1,1

a1

a1

a2

a7
a1
a7
a8
a6

a1
a2
a8
a9

a2
a3

a3

a9
a10

a10
a6

a2

a3

a3

NULL

NULL

xi

authorized couple
domain of variable

v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4 v2,5

Fig. 7. Connectivity constraints for the conflict.

Table 1
Solution of the WCSP

v1,4 : NULL, v2,5 : NULL, PENALTY : 0
v1,3 : a3, v2,4 : a10,
v1,2 : a2, v2,3 : a9,
v1,1 : a1, v2,2 : a8,

v2,1 : a7,

domains are

v1,1 : {a1}; v1,2 : {a1, a2}; v1,3 : {a2, a3}; v1,4 : {NULL, a3}; v2,1 : {a6, a7}; v2,2 : {a1, a6, a7, a8};
v2,3 : {a1, a2, a8, a9}; v2,4 : {a2, a3, a9, a10}; v2,5 : {NULL, a3, a10};PENALTY : [0, 1].

There are two types of constraints: connectivity constraints, that are binary constraints, and capacity
constraints, with one global constraint per link. A preliminary arc-consistency step on connectivity con-
straints (see Fig. 7) removes values that have no support in a domain. It removes, a1 from the domain of
v1,2, a2 from the domain of v1,3, and a3 from the domain of v1,4 . . .

Finally, ordered variables and their new domains are

v1,4 : {NULL}; v1,3 : {a3}; v1,2 : {a2}; v1,1 : {a1}; v2,5 : {NULL}; v2,4 : {a3, a10}; v2,3 : {a2, a9};
v2,2 : {a1, a8}; v2,1 : {a6, a7};PENALTY : [0, 1].

The resolution of the WCSP by VNS/LDS + CP allows us to obtain the solution depicted in Table 1.
The final network is illustrated in Fig. 6c.

2912 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

7. Related works

Several QoS routing algorithms have been published recently [31–35]. But, none of them performs
rerouting.

Routing problems with multiple QoS constraints are extensively reviewed by Chen and Nahrstedt in
[36]. The authors give a classification of these problems, discuss their time complexities and compare
some algorithms (for an overview of these algorithms see [36]). However the time complexity of QoS
routing algorithms strongly depends on the types of involved metrics, and are unfortunately NP-complete
[9] in the case of two independent additive metrics.

Christien Frei [37] has formulated the problem of Resource Allocation in Networks (RAIN) as a
CSP, where variables are demands; the domain of each variable is the set of all routes between the end-
points of the demand, and constraints on each link ensure that the resource capacity is not exceeded
by the demands routed through it. To compute and represent domains of variables, he introduced the
Blocking Island abstraction (hierarchy of bandwidth availabilities), in order to create a compact rep-
resentation of all possible routes satisfying a demand. All demands are known prior to the resolution,
and are allocated off-line. The RAIN problem is close to a routing problem, but Frei’s approach is not
applicable to our problem for two reasons: first, our planning must be performed on-line; second, due
to the time dimension, it would be unrealistic to use the Blocking Island paradigm over 35,000 slots of
time.

Muriel Lauvergne [12], has proposed a first approach for resource allocation in ATM networks. Her
approach mixes shortest path algorithms, Constraint Propagation and repairing principles [38] and can be
summarized as follows: a preliminary step is achieved with a shortest path algorithm in order to compute
a route for the connection demand. If such a route does not exist, reasons of failure are identified and
constitute a set of demand conflicts. Successively, for each demand conflict, a RCSP (restricted to the area
of the network that can be modified) is built and then solved as a Constraint Satisfaction Problem by a
backtracking algorithm. Each resolution of a RCSP is limited by an inner timeout: the whole computing
time (1 mn) is arbitrarily divided into k time slots of 60/k s, corresponding to the maximal duration
allocated for the resolution of an RCSP. RCSPs are solved using chronological backtracking with Constraint
Propagation. If an RCSP can be solved in the allowed computing time, the demand will be accepted. If not,
the demand will be rejected.

This approach has two major drawbacks:

• Only shortest conflicting paths of order (k = 1) are considered to build demand conflicts. This choice
strongly limits the possibilities to perform a successful rerouting. This noticing has motivated the
development of our EDSP algorithm which computes the set of shortest conflicting paths of order
k, (1�k�maxLinks) (see Section 4). This greatly enlarges the sub-area of the network that can be
repaired by considering more relevant demand conflicts.

• Second, solving an RCSP by a backtracking algorithm within an arbitrary inner timeout, is less adapted
than a method conceived for solving anytime problems. In [12], 20% of the resolution of demand
conflicts are interrupted by inner timeouts. So, using a constructive method like backtracking in an
anytime context seems to be inappropriate (see Section 3.4): the resolution of a demand conflict may be
interrupted even though it would lead quickly to a complete solution (at least, in less than the amount
of remaining computing time). Moreover, work performed to obtain partial solutions is systematically
lost upon backtracking.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2913

Pe
rc

en
ta

ge
 o

f
de

m
an

ds
 m

or
e

ac
ce

pt
ed

 (
%

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

1 2 3 4 5

Number of admitted violated links (maxLinks)

S1 : 71 demands S2 : 105 demands S3 : 151 demands

Fig. 8. Influence of maxLinks on the percentage of demands more accepted.

8. Experimental results

France Telecom R&D provided us with data for real-life ATM networks of 31 nodes, 134 links and a
set of 60 demands. Few series of benchmarks have been built. In this paper, we study three series S1, S2
and S3 of respective sizes 71, 105 and 151. For each series, we give the average results over 10 runs for
VNS/LDS + CP. For each connection demand, we allow 1 min of computing time.

VNS/LDS + CP parameters are: the maximal number of local moves (MAXMOVES), the initial neigh-
borhood size (size), and the number of discrepancies (discrep). For all experiments, MAXMOVES has been
set to 50, size to 3, and discrep to 4 (these are the best values found for size and discrep). We carried out
experiments with different values of maxLinks: {1, 2, 3, 4, 5}, and freedom degree (�): {0, 1, 2}.

8.1. Influence of maxLinks

maxLinks is the maximal number of violated links per conflicting path computed by the EDSP algorithm.
For this experiment, we fixed the freedom degree to one. Fig. 8 indicates, as expected, that for low values
of maxLinks results are worse: the sub-area of the network where rerouting can be performed is too small.
(maxLinks = 4) and (maxLinks = 5) give the best results.

These results are similar because the average length of routes does not exceed 5. So, for the rest of our
experiments, maxLinks will be set to 5.

8.2. Influence of the freedom degree

The degree of freedom enables to accept connections on routes that are longer than shortest paths. As
depicted in Fig. 9, � = 1 gives the best results. In fact, for higher values of �, demands are allocated on

2914 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

S3 : 151 demandsS2 : 105 demandsS1 : 71 demands

Pe
rc

en
ta

ge
 o

f
de

m
an

ds
 m

or
e

ac
ce

pt
ed

 (
%

)

delta = 0 delta = 1 delta = 2

Fig. 9. Influence of freedom degree on the percentage of demands more accepted.

Series

50

70

90

110

130

150

3

151

2

105

71

1

Accepted by our method
Number of demands

Accepted without rerouting

5

1

2

3

4

Number of demands

15110571

Accepted by our method
Accepted without rerouting

A
ve

ra
ge

 le
ng

th
 o

f
ad

m
itt

ed
 r

ou
te

s

N
um

be
r

of
 a

dm
itt

ed
 d

em
an

ds

Fig. 10. Comparing the number of accepted demands and the average length of routes.

too long routes and the network will then reach stalemate very quickly since links will be over-loaded.
Good results are also obtained for � = 0. In that case, rerouting provides shortest routes.

8.3. Comparisons and discussion

Fig. 10 (left) compares the number of accepted demands with and without rerouting. The method
without rerouting is a classical shortest path (obtained by setting maxLinks to 0 in the EDSP algorithm).
Without rerouting, the number of rejected demands rapidly augments as the number of demands to be
planned increases. Fig. 11 shows that rerouting significantly improves the amount of accepted demands.

Fig. 10 (right) compares both methods in terms of network resource utilization, i.e., lengths of routes
for accepted demands. The overhead of rerouting is negligible from this point of view. This important

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2915

1

2

3

0

5

10

15

20

Series

VNS|LDS+CP

Method without rerouting

N
um

be
r

of
 r

ej
ec

te
d

de
m

an
ds

Fig. 11. Comparing the number of rejected demands.

property is due to the fact that, when we have to reroute some already established connection, we only
accept routes whose length is very close to that of shortest paths (� = 1).

This real-life application demonstrates the interest of VNS/LDS + CP for on-line rerouting. For this
application, rerouting with VNS/LDS + CP enables to accept an average of 67% of demands that would
be rejected by a greedy algorithm (see Fig. 11).

9. Conclusions and further works

We have used a Constraint based approach to plan connection demands in ATM networks. We have
proposed an extended version of Dijkstra’s algorithm to find shortest routes that minimize capacity
violations on links. We have therefore modelled rerouting as a constraint optimization problem formulated
as a WCSP solved using VNS/LDS + CP. First experiments have shown the efficiency of our approach
since the number of accepted demands increases significantly compared to methods only based on shortest
paths algorithms.

In the future work, we intend to integrate and study benefits of recursive rerouting. Suppose that, in
order to accept a new demand d, we need to reroute a connection c1. Moreover, suppose that c1 can be
rerouted if and only if another connection c2 has to be itself rerouted. As rerouting is actually performed,
it would fail in such a situation. We expect that recursive rerouting would lead to accept more demands.
But the depth of recursive calls to rerouting will have to be managed very carefully taking into account
our specific context of on-line planning.

Acknowledgements

We thank Remi Douence for all improvements he made to this paper.

2916 S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917

References

[1] Loudni S, Boizumault P. A new hybrid method for solving constraint optimization problems in anytime contexts. In:
Proceedings of the thirteenth IEEE international conference on tools with artificial intelligence (ICTAI’2001), vol. 1417.
Dallas, USA, November 2001. IEEE Computer Society. p. 325–32.

[2] Loudni S, Boizumault P. Solving constraint optimization problems in anytime contexts. In: Gottlob G, Walsh T. editors.
IJCAI-03: Proceedings of the 18th international joint conference on artificial intelligence, Acapulco, Mexico, August 2003.
Los Altas, CA: Morgan Kaufmann. p. 251–6.

[3] Hansen P, Mladenovic N. Variable neighborhood search. Computers And Operations Research 1997;24:1097–100.
[4] William D Harvey, Matthew L Ginsberg. Limited discrepancy search. In: Mellish C, editor. IJCAI’95: Proceedings of the

international joint conference, Montreal, August 1995.
[5] Loudni S. Conception et mise enWuvre d’algorithmes anytime: une approche à base de contraintes. PhD Thesis, École des

Mines de Nantes, France, December 2002.
[6] de Givry S, Hamadi Y, Mattioli J, Lemaitre M, Verfaillie G, Aggun G, Gouachi I, Benoist T, Bourreau E, Laburthe F,

Loudni S, David P, Bourgault S. Towards an on-line optimisation framework. In: OLCP 2001, international workshop on
on-line combinatorial problem solving and constraint programming (at CP-2001), Paphos, Cyprus, 2001.

[7] Friesen VJ, Harms JJ, Wong JW. Resource management with virtual paths in ATM networks. IEEE Network 1996; 10–20.
[8] Ma Q. Quality-of-service routing in integrated services networks. PhD Thesis, Computer Science Department, Carnegie

Mellon University, Pittsburgh, USA, January 1998.
[9] Wong Z, Crowcroft J. Quality of service routing for supporting multimedia applications. IEEE Journal on Selected Area

in Communications 1996;17(7):1228–34.
[10] ITU-T: International Telecommunication Union. Traffic control and congestion controle in b-isdn. 2000.
[11] Brichet F, Roberts J, Simonian A, Gravey A, Sevilla K. Le contrôle d’admission des connexions pour le service SBR.

Technical Report, Ft.bd/cnet/dac/ntr/n-5031, FT.BD, 1997.
[12] Lauvergne M, David P, Boizumault P. Connections reservation with rerouting for ATM networks: a hybrid approach with

constraints. In: Principles and practice of constraint programming (CP-02), vol. 1713, Lectures notes in computer science.
Ithaca, NY, Berlin: Springer. September 2002.

[13] ATM forum. Private Network Network Interface (PNNI). v1.0. 1996.
[14] Bryant RE. Graph-based algorithms for boolean function manipulation. IEEE, Transaction on Computers 1986;C-35(8):

677–91.
[15] Boddy M, Dean TL. Deliberation scheduling for problem solving in time-constrained environments. Artificial Intelligence

1994;67:245–95.
[16] Zilberstein S. Using anytime algorithms in intelligent systems. AI Magazine 1996;17(3):73–83.
[17] Cabon B, de Givry S, Lobjois L, Schiex T, Warners JP. W.K. Radio link frequency assignment. Constraints:An International

Journal 1999;4(1):79–89.
[18] Lobjois L, Lemaître M, Verfaillie G. Large neighbourhood search using constraint propagation and greedy reconstruction

for valued csp resolution. In: Proceedings of the ECAI2000 workshop on modelling and solving problems with constraints.
2000.

[19] Kirkpatrick S, Gelatt CD, Vecchi PM. Optimization by simulated annealing. Science 1983;220:671–80.
[20] Kirkpatrick S. Optimization by simulated annealing: quantitative studies. Journal of Statistical Physics 1984;34(5).
[21] Glover F, Laguna M. Modern heuristic techniques for combinatorial problems, Chapter Tabu Search. Oxford: Blackwell

Scientific Publications; 1993. p. 70–141.
[22] Glover F, Laguna M. Tabu Search. Dordrecht: Kluwer Academic Publishers; 1997.
[23] Minton S, Johnston M, Philips A, Laird P. Minimizing conflicts: a heuristic repair method for constraint satisfaction and

scheduling problems. Artificial Intelligence 1992;58:161–205.
[24] Pesant G, Gendreau M. A view of local search in constraint programming. In: Proceeding of the second international

conference on principles and practice of constraint programming (CP-96). Cambridge, USA; 1996. Berlin: Springer.
p. 353–66.

[25] Apt A, Schaerf A. Search and imperative programming. In: Mellish C. editor. POLP-97: Proceedings of 24th annual
SIGPLAN-SIGACT symposium on principles of programming languages. 1997. p. 67–79.

S. Loudni et al. / Computers & Operations Research 33 (2006) 2891–2917 2917

[26] Prestwich S. A hybrid search architecture applied to hard random 3-sat and low-autocorrelation binary sequences. In:
Principles and practice of constraint programming (CP 2000), vol. 1894. Lecture notes in computer science, Singapore,
September 2000. Springer. p. 337–52.

[27] Laburthe F, Caseau Y. SALSA, a language for search algorithms. In: CP-98, Lecture notes in computer science, vol. 1520.
Berlin: Springer; 1998. p. 310–24.

[28] Schiex T, Fargier H, Verfaillie G. Valued constraint satisfaction problems: hard and easy problems. In: Mellish C. editor.
IJCAI’95: Proceedings of the international joint conference on artificial intelligence, Montreal, August 1995.

[29] Bistarelli S, Montanari U, Rossi F, Schiex T, Verfaillie G, Fargier H. Semiring-based csps and valued csps: frameworks,
properties, and comparison. Constraints: An International Journal 1999;4(3):199–240.

[30] Larrosa J, Meseguer P, Schiex T. Maintaining reversible dac for solving max-csp. Artificial Intelligence 1999;107(1):
149–63.

[31] de Neve H, van Mieghem P. A multiple quality of service routing algorithm for PNNI. In: ATM workshop 1998. p. 324–8.
[32] Hwang R-H, Chen M-X, Hsu C-M. Routing in ATM networks with multiple classes of QoS. In: Global telecommunications

conference, GLOBECOM 2000, vol. 3. 2000. p. 1756–60.
[33] Liu J, Niu Z, Zheng J. A QoS routing algorithm for hierarchical ATM networks. In: APCC/OECC’99, vol. 1. 1999.

p. 188–91.
[34] Vasilakos A, Saltouros MP, Atlassis AF, Pedrycs W. Optimizing QoS routing in hierarchical ATM networks using

computational intelligent techniques. IEEE Transactions On Systems, Man and Cybernetics, Part C 2003;33(2):
297–312.

[35] Lee W, Hluchyi M, Humblet P. Routing subject to quality of service constraint in integrated communication networks,
IEEE Network, July 1995, pp. 46–55.

[36] Chen S, Nahrstedt K. An overview of quality of service routing for the next generation high-speed networks: problems
and solutions. IEEE Network Magazine 1998; 67–74.

[37] Frei C, Faltings B. Resource allocation in networks using abstraction and constraint satisfaction techniques. In: Principles
and practice of constraint programming (CP-99), vol. 1713, Lecture notes in computer science. Berlin; Springer. 1999.
p. 204–18.

[38] Lauvergne M. Réservation de Connexions Avec Reroutage Pour les Réseaux ATM, Une Approche Hybride par
Programmation par Contraintes. PhD Thesis, École des Mines de Nantes, France, March 2002.

[39] Boizumault Patrice, David Philippe, Djellab Housni Resource allocation in a mobile telephone network: a constructive
repair algorithm. RAIRO Operations Research 2001;35(2):189–209.

[44] Laburthe F. Choco: implementing a cp kernel. In: CP00 post conference workshop on techniques for implementing
constraint programming systems (TRICS), Singapore, September 2000.

Further Reading

[40] Caseau Y, Josset F-X, Laburthe F. Claire: combining sets, search and rules to better express algorithms. In: De Schreye
D, editor. Proceeding of the 15th international conference on logic programming, ICLP’99. Cambridge, MA: MIT Press;
1999. p. 245–590.

[41] Pesant G, Gendreau M. A constraint programming framework for local search methods. Journal of Heuristics 1999.
p. 1–25.

[42] Shaw P. Using constraint programming and local search methods to solve vehicle routing problems. In: Proceedings of the
international conference on principles and practice of constraint programming (CP-98), Pisa, Italy, 1998. p. 417–31.

[43] Focacci F, Laburthe F, Lodi A. Local search and constraint programming. In: Glover F, Kochenberger G, editors. Handbook
on metaheuristics. Dordrecht: Kluwer Academic Publishers, 2004. p. 1–31.

	On-line resources allocation for ATM networks with rerouting
	Introduction
	Resource allocation in ATM networks
	ATM technology
	Quality of Service and metrics
	QoS in ATM network
	Connections reservation for ATM networks
	Connections reservation service
	Communication network
	Rerouting in ATM networks

	Retained approach
	Efficient time representation
	Characteristics of the problem
	Anytime algorithms
	Hybrid methods
	Overview of the resolution method

	Computing demand conflicts
	Conflicting shortest path and demand conflict
	Extending Dijkstra's algorithm
	Computing and ordering demand conflicts

	Rerouting using VNS/LDS+CP
	Valued constraint satisfaction problems
	Building weighted CSPs
	Variables, domains and constraints
	Modelling as a WCSP

	Rerouting with VNS/LDS+CP
	Building the initial assignment
	Relaxing variables
	Control of the neighborhood size
	Rebuilding a solution
	Limited discrepancy search
	Constraint propagation
	Heuristics

	Study of an example
	Description
	Arrival of a new demand
	Selecting demand conflicts
	Rerouting with VNS/LDS+CP

	Related works
	Experimental results
	Influence of =maxLinks
	Influence of the freedom degree
	Comparisons and discussion

	Conclusions and further works
	Acknowledgements
	References
	Further Reading

