
Constraints
DOI 10.1007/s10601-016-9252-z

Prefix-projection global constraint and top-k approach
for sequential pattern mining

Amina Kemmar1 ·Yahia Lebbah1 ·Samir Loudni2 ·
Patrice Boizumault2 ·Thierry Charnois3

© Springer Science+Business Media New York 2016

Abstract Sequential pattern mining (SPM) is an important data mining problem with broad
applications. SPM is a hard problem due to the huge number of intermediate subsequences
to be considered. State of the art approaches for SPM (e.g., PREFIXSPAN Pei et al.
2001) are largely based on the pattern-growth approach, where for each frequent prefix
subsequence, only its related suffix subsequences need to be considered, and the database
is recursively projected into smaller ones. Many authors have promoted the use of con-
straints to focus on the most promising patterns according to the interests of the end user.
The top-k SPM problem is also used to cope with the difficulty of thresholding and to con-
trol the number of solutions. State of the art methods developed for SPM and top-k SPM,
though efficient, are locked into a rather rigid search strategy, and suffer from the lack of
declarativity and flexibility. Indeed, adding new constraints usually amounts to changing the
data-structures used in the core of the algorithm, and combining these new constraints often
require new developments. Recent works (e.g. Kemmar et al. 2014; Négrevergne and

� Yahia Lebbah
lebbah.yahia@univ-oran.dz; ylebbah@gmail.com

Amina Kemmar
kemmar.amina@edu.univ-oran1.dz

Samir Loudni
samir.loudni@unicaen.fr

Patrice Boizumault
patrice.boizumault@unicaen.fr

Thierry Charnois
thierry.charnois@lipn.univ-paris13.fr

1 LITIO, University of Oran 1 Ahmed Ben Bella, Oran, Algeria

2 GREYC (CNRS UMR 6072), University of Caen, Caen, France

3 LIPN (CNRS UMR 7030), University PARIS 13, Paris, France

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10601-016-9252-z-x&domain=pdf
http://orcid.org/0000-0003-4736-2976
mailto:
mailto:kemmar.amina@edu.univ-oran1.dz
mailto:samir.loudni@unicaen.fr
mailto:patrice.boizumault@unicaen.fr
mailto:thierry.charnois@lipn.univ-paris13.fr

Constraints

Guns 2015) have investigated the use of Constraint Programming (CP) for SPM. How-
ever, despite their nice declarative aspects, all these modelings have scaling problems, due
to the huge size of their constraint networks. To address this issue, we propose the Prefix-
Projection global constraint, which encapsulates both the subsequence relation as well as
the frequency constraint. Its filtering algorithm relies on the principle of projected databases
which allows to keep in the variables domain, only values leading to a frequent pattern
in the database. Prefix-Projection filtering algorithm enforces domain consistency on the
variable succeeding the current frequent prefix in polynomial time. This global constraint
also allows for a straightforward implementation of additional constraints such as size, item
membership, regular expressions and any combination of them. Experimental results show
that our approach clearly outperforms existing CP approaches and competes well with the
state-of-the-art methods on large datasets for mining frequent sequential patterns, sequen-
tial patterns under various constraints, and top-k sequential patterns. Unlike existing CP
methods, our approach achieves a better scalability.

Keywords Global constraints · Data mining · Sequential pattern mining ·
Prefix-Projection · Top-k

1 Introduction

Mining sequential patterns (SPM) is an important task in data mining with many use-
ful applications, including the analysis of medical or biological data and textual data, the
analysis of web click-streams, the analysis of DNA sequences, and so on. Given a set of
sequences, where each sequence consists of an ordered list of items, SPM consists in find-
ing sequential patterns (sequences of items), which are sub-sequences of at least minsup

sequences, where minsup is a minimum support threshold. For instance, let us consider the
set of items {A,B,C,D} and the database depicted by Table 1. Let minsup = 2, 〈AC〉 is a
sequential pattern since it appears twice:1 first, in 〈ABCBC〉 and second, in 〈BABC〉.

SPM is a hard problem due to the huge number of intermediate subsequences to be
considered, particularly when a large number of long frequent subsequences exist, such as
in DNA sequence data sets, or at a low minimum support [21]. State of the art approaches
for SPM, (e.g., PREFIXSPAN [20]) adopt a pattern growth approach which is considered to
be the most efficient one for SPM. Indeed, the generation of infrequent candidate patterns
is avoided by recursively projecting the database into smaller ones. For each frequent prefix
subsequence, only its related suffix subsequences need to be considered without candidate
generation. Many authors, (e.g., Pei et al. [22]) have promoted the use of constraints to
focus on the most promising patterns according to the interests of the end user. Srikant and
Agrawal [29] have generalized the scope of SPM [1] to include time constraints and sliding
time windows. Garofalakis et al. [9] have introduced regular expressions as constraints for
SPM. A few other constraints have been proposed (e.g. [15, 32, 34, 36]).

Moreover, top-k SPM is also used to cope with the difficulty of thresholding and
to control the number of solutions. Unless specific domain knowledge is available, the

1〈AC〉 appears respectively in the first sequence 〈ABCBC〉 (i.e., two positions (1, 3) at 〈ABCBC〉 and (1,
5) at 〈ABCBC〉) and in the second sequence 〈BABC〉 (i.e., one position (2, 4) at 〈BABC〉); thus it is a
frequent pattern. Notice that when some sequential pattern appears many times in some sequence (e.g., 〈AC〉
in 〈ABCBC〉), it is considered a single occurrence.

Constraints

Table 1 Example of a sequence
database SDB1 sid Sequence

1 〈ABCBC〉
2 〈BABC〉
3 〈AB〉
4 〈BCD〉

choice of a threshold is often arbitrary and relevant patterns can be missed. This draw-
back is obviously even deeper when several constraints have to be combined and thus
several thresholds are required. So, measure functions are introduced to reflect the inter-
estingness of a pattern and to determine the k best patterns. Several methods have been
designed to compute the top-k patterns [5, 11, 24, 31, 33]. Even if the specific methods
developed for SPM and top-k SPM are efficient, they all lack of declarativity and flex-
ibility. Indeed, adding new constraints usually amounts to changing the data-structures
used in the core of the algorithm, and combining these new constraints often require new
developments.

Several proposals have investigated relationships between SPM and constraint program-
ming (CP) to revisit data mining tasks in a declarative and generic way [6, 14, 16]. The
declarative aspect represents the key advantage of the proposed CP approaches. By this
way, one can add/remove any user-constraint without requiring the explicit development of
new specialized solving methods. But, all these proposals have scaling problems, due to the
huge size of their constraints networks. Recently, Negrevergne et al. have presented in [18]
two CP improved encodings for SPM. The first one uses a global constraint to encode the
subsequence relation (denoted global-p.f), while the second one encodes explicitly this
relation using additional variables and constraints (denoted decomposed-p.f) allowing
to express constraints over embeddings like the max-gap constraint. But these proposals
still relies on reified constraints and additional variables.

For instance, consider the problem of finding sequential patterns p belonging to at least
minsup sequences of the database given in Table 1. An array S of 4 boolean variables (one
per sequence) is defined, representing which sequences of the SDB1 include the current
pattern. Then, for each sequence si of SDB1, a reified constraint, stating whether (or not)
the unknown pattern p is a subsequence of si , is imposed: (Si ⇔ p � si). To ensure
that at least minsup sequences of the database should include the pattern p, we add the
following minimum frequency constraint: S1 + S2 + S3 + S4 ≥ minsup. Solving these 5
constraints allows to find sequential patterns covering minsup sequences of Table 1. Even
if this encoding provides an elegant modelling, it has a major drawback since the number
of constraints and variables grows linearly with the size of the database. It is clear from
the context that such a model cannot cope with large databases, since that managing a huge
number of constraints is very costly for CP solvers.

Therefore, we propose in this work a single global constraint, called Prefix-Projection,
to encode the subsequence relation and the frequency constraint which represents the core
of the SPM problem. The filtering algorithm of this constraint is based on the principle of
projected databases [20] which allows to remove from domains, the values leading to infre-
quent patterns. The frequent items in each projected database represent consistent values
allowing to extend the current partial assignment of variables. The global constraint Prefix-
Projection can be combined easily with additional constraints to express many restrictions
on the extracted patterns.

Constraints

Contributions and roadmap

1. We introduce the Prefix-Projection global constraint for SPM. This global constraint
encapsulates both the subsequence relation as well as the frequency constraint into
a single constraint, thus avoiding extra variables and extra constraints. Its filtering
relies on the principle of projected databases. Prefix-Projection filtering algorithm
enforces domain consistency on the variable succeeding the current frequent pre-
fix in polynomial time. Moreover, we show how this global constraint also allows
for a straightforward implementation of additional constraints such as size, item
membership, regular expressions and any combination of them.

2. We show how Prefix-Projection global constraint can be exploited for mining top-k
sequential patterns, and propose an effective strategy for initializing the top-k patterns
with the most promising ones so that high support patterns can be derived earlier. Then,
we investigate the effect of adding constraints for mining top-k sequential patterns, and
show how they can be easily combined with Prefix-Projection.

3. We present an extensive empirical study which includes a wide range of real datasets
and comparisons of our techniques to state-of-the-art ones. Experimental results show
that our approach clearly outperforms CP approaches and competes well with the state-
of-the-art methods on large datasets for mining frequent sequential patterns, sequential
patterns under various constraints, and top-k sequential patterns. Our approach achieves
a better scalability while it is a major issue for CP approaches.

Compared to the conference paper [12], contribution #1 is presented in more depth with
additional materials in the core of the paper and new experiments evaluating the scalabil-
ity have been performed (see Section 6.7). Contribution #2 (top-k SPM) and all related
experiments are new (see Section 5 and Section 6.8).

The paper is organized as follows. Section 2 recalls preliminaries. Section 3 provides a
critical review of ad hoc methods and CP approaches for SPM. Section 4 presents the global
constraint Prefix-Projection. Section 5 details our approach for mining top-k sequential pat-
terns. Section 6 reports experiments we performed. Finally, we conclude and draw some
perspectives.

2 Preliminaries

This section presents background knowledge about sequential pattern mining and constraint
satisfaction problems.

2.1 Sequential patterns

Let I be a finite set of items. The language of sequences corresponds to LI = In where
n ∈ N

+.

Definition 1 (sequence, sequence database) A sequence s over LI is an ordered list
〈s1s2 . . . sn〉, where si , 1 ≤ i ≤ n, is an item. n is called the length of the sequence s. A
sequence database SDB is a set of tuples (sid, s), where sid is a sequence identifier and s

a sequence.

Example 1 (Running example) Let us consider the sequence database SDB1 given in
Table 1. SDB1 contains four sequences where the set of items is I = {A,B,C, D}. The

Constraints

sequence s = 〈ABCBC〉 has 5 items, where items B and C appear two times. The length
of s is 5, we say that s is a 5-length sequence.

In sequence mining, a key concept is the pattern subsequence relation. A sequence α is
subsequence of another sequence s if there exists a mapping of every item in α to the same
symbol in the sequence s such that the order is respected.

Definition 2 (subsequence, � relation) A sequence α = 〈α1 . . . αm〉 is a subsequence of
s = 〈s1 . . . sn〉, denoted by (α � s), if m ≤ n and there exist integers 1 ≤ j1 ≤ . . . ≤
jm ≤ n, such that αi = sji

for all 1 ≤ i ≤ m. We also say that α is contained in s or s is a
super-sequence of α. A tuple (sid, s) contains a sequence α, if α � s.

Example 2 For example, consider the sequence 〈ABCBC〉 of SDB1 given in Table 1, then
〈AC〉 is a subsequence of 〈ABCBC〉, denoted by 〈AC〉 � 〈ABCBC〉. We also say that
〈ABCBC〉 is a super-sequence of 〈AC〉.

The cover of a sequence p in SDB is the set of all tuples in SDB in which p is contained.
The support of a sequence p in SDB is the number of tuples in SDB which contain p.

Definition 3 (coverage, support) Let SDB be a sequence database and p a sequence.
coverSDB(p) = {(sid, s) ∈ SDB | p � s} and supSDB(p) = #coverSDB(p).

Example 3 Assume that p = 〈BC〉, coverSDB1(p) = {(1, 〈ABCBC〉), (2, 〈BABC〉),
(4, 〈BCD〉)}, then supSDB1(p) = 3.

To decide if a pattern p is frequent or not in the sequence database, we have to define
some threshold value called the minimum support threshold and denoted by minsup.

Definition 4 (sequential pattern) Given a minimum support threshold minsup, every
sequence p such that supSDB(p) ≥ minsup is called a sequential pattern [1]. p is said to
be frequent in SDB.

Example 4 Consider the sequence p = 〈AC〉. Since p appears only in the two sequences s1
ans s2 in SDB1, we have coverSDB1(p) = {(1, s1), (2, s2)}. Given minsup = 2, p = 〈AC〉
is a sequential pattern because supSDB1(p) ≥ 2.

Definition 5 (sequential pattern mining (SPM)) Given a sequence database SDB and a
minimum support threshold minsup. The problem of sequential pattern mining (SPM) is to
find all patterns p such that supSDB(p) ≥ minsup.

Example 5 Solving the SPM problem on the sequence database SDB1 with minsup = 3
consists to find the set of patterns which appear at least in 3 sequences in SDB1. We obtain
the following sequential patterns: 〈A〉, 〈B〉, 〈C〉, 〈AB〉 and 〈BC〉.

Most SPM algorithms rely on the anti-monotonicity property of frequency to reduce the
search space.

Definition 6 (Anti-monotone constraint) A constraint c is said to be anti-monotone if and
only if, for every pattern satisfying c, all its subsequences satisfy c as well.

Constraints

Hence, by contraposition, if a pattern p does not satisfy an anti-monotone constraint, then
all of its super-sequences will not satisfy it. Since the frequency constraint is anti-monotone,
once a pattern is detected as infrequent, then no super-sequence of it can be frequent.
This property, which is at the heart of SPM algorithms, allows growing frequent sequences
to their super-sequences, and trimming the exponential search space by ignoring super-
sequences of non-frequent sequences. This is the well known pattern growth principle [20].
To illustrate the idea behind this principle, consider the sub-sequence 〈ABC〉 from SDB1
(Table 1) with minsup = 2. Clearly, any sequence that contains 〈ABC〉 must also contain
its sub-sequences, 〈AB〉, 〈AC〉, 〈BC〉, 〈A〉, 〈B〉, and 〈C〉. As a result, if 〈ABC〉 is frequent,
then all sub-sequences of 〈ABC〉 must also be frequent. Conversely, if a sub-sequence
such as 〈CB〉 is infrequent, then all of its super-sequences must be infrequent too.

2.2 SPM under constraints

Mining the complete set of frequent patterns is a difficult task since we are faced with
the major issue of a huge number of patterns which are not all interesting to the user.
Constraint-based approaches help to avoid these non interesting patterns, by allowing the
user to express as many constraints as he wants, to produce only patterns of interest. In this
section, we define the problem of mining sequential patterns in a sequence database satisfy-
ing user-defined constraints. Then, we review the most usual constraints for the sequential
mining problem [22].

SPM under constraints problem consists of finding a set of patterns {p ∈
LI | C(p, SDB) is true}, where C(p, SDB) is a selection predicate that states the con-
straints under which the pattern p is a solution w.r.t. the database SDB. In the following,
we present different types of constraints that we explicit in the context of sequence mining.
Some of these constraints will be handled by our approach (see Section 4.1).

1. Minimum size constraint. This constraint, denoted minSize(p, �min), states that the
number of items of p must be greater than or equal to �min.

Example 6 For instance, if we impose the constraint minSize(p, 3) ∧ supSDB1(p) ≥
2, only two sequential patterns are mined from Table 1: p1 = 〈ABC〉 and p2 = 〈BBC〉.

2. Maximum size constraint. This constraint, denoted maxSize(p, �max), restricts the
maximum size (in number of items) of p (i.e. p must contain at most �max items).

Example 7 For instance, if we impose the constraint maxSize(p, 2) ∧ supSDB1(p) ≥
3, only the following set of patterns are extracted from Table 1: 〈A〉, 〈B〉, 〈C〉, 〈AB〉 et
〈BC〉.

3. Item constraint. This constraint, denoted item(p, t), states that an item t must belong
(or not) to a pattern p.

Example 8 Let the following three constraints, supSDB1(p) ≥ 3 ∧ maxSize(p, 2) ∧
item(p, C), defined over sequences of Table 1. Only patterns p3 = 〈C〉 and p4 = 〈BC〉
satisfy these three constraints.

4. Regular expression constraint. A regular expression constraint reg(p, exp) is a con-
straint specified as a regular expression exp over the set of items of SDB. A pattern

Constraints

p satisfies reg(p, exp) iff the pattern is accepted by its equivalent deterministic finite
automata [9].

Example 9 Let us consider the two constraints: supSDB1(p) ≥ 2 ∧ reg(p, exp),
where exp = B{BC|D}. The sequential pattern p5 = 〈BBC〉 is extracted from SDB1
(Table 1) since it satisfies the regular expression constraint and coverSDB1(p5) =
{(1, s1), (2, s2)}.

5. Aggregate constraint. This constraint allows to express a constraint on an aggregation
of items in a pattern. The aggregate function can be sum, avg, max, min, etc.

Example 10 Suppose that each sequence of SDB1 corresponds to a customer and every
item in the sequence to a product bought by the customer. A price is associated to each
product. In this context, a marketing analyst may be interested to sequential patterns
where the average price of items is greater than a certain value.

All above constraints put restrictions on patterns. Other constraints impose a restric-
tion on subsequence relation, by restricting the distance allowed between items in the
sequence. Examples of such constraints are duration and gap constraints.

6. Duration constraint. The duration constraint is defined only if a time-stamp is
attributed to each item in the sequence database. A pattern p satisfies the duration con-
straint Dur[M, N] if and only if the distance between the first and the last item of p in
the original sequences is greater than M and lower than N .

Example 11 If we consider the position of the item in the sequence as its corresponding
timestamp, the sequence 〈BCB〉 is a subsequence of 〈ABCBC〉 under the duration
constraint Dur[0, 2].

7. Gap constraint. A sequential pattern with gap constraint gap[M, N] is a pattern such
that at least M and at most N items are allowed between every two adjacent items,
in the original sequences. Formally, a sequence p = 〈p1 . . . pm〉 is a subsequence of
s = 〈s1 . . . sn〉, under the gap constraint gap[M, N], if m ≤ n and, for all 1 ≤ i ≤ m,
there exist integers 1 ≤ j1 ≤ . . . ≤ jm ≤ n, such that pi = sji

, and ∀k ∈ {1, ..., m −
1},M ≤ jk+1 − jk − 1 ≤ N .

Example 12 Let us consider the sequences of SDB1 (Table 1) and the gap constraint
gap[1, 1] (which means that one item must separate each two neighbor items). Patterns
〈A〉, 〈B〉, 〈C〉, 〈AC〉, 〈BB〉 and 〈CC〉 are subsequences of sequence s1 under gap[1, 1],
whereas 〈AB〉 and 〈BC〉 are not.

In this paper, we will consider size, item and regular expression constraints.

2.3 Projected databases

We now present the necessary definitions related to the concept of projected databases [20].

Definition 7 (prefix, projection, suffix) Let β = 〈β1 . . . βn〉 and α = 〈α1 . . . αm〉 be two
sequences, where m ≤ n.

Constraints

– Sequence α is called the prefix of β iff ∀i ∈ [1..m], αi = βi .
– Sequence β = 〈β1 . . . βn〉 is called the projection of some sequence s w.r.t. α, iff (1)

β � s, (2) α is a prefix of β and (3) there exists no proper super-sequence β ′ of β such
that β ′ � s and β ′ also has α as prefix. In other words, β is called the projection of s

w.r.t. α iff β is the largest subsequence of s which starts by α.
– Sequence γ = 〈βm+1 . . . βn〉 is called the suffix of s w.r.t. α. With the standard

concatenation operator ”concat”, we have β = concat (α, γ).

Example 13 Let s1 = 〈ABCBC〉 be the first sequence of SDB1. For instance, sequence
α = 〈AC〉 is a prefix of sequence β = 〈ACBC〉 and γ = 〈BC〉 is its suffix. Sequence
β = 〈ACBC〉 is the projection of sequence s1 w.r.t. α.

Definition 8 (projected database) Let SDB be a sequence database, the α-projected
database, denoted by SDB|α , is the collection of suffixes of sequences in SDB w.r.t. prefix
α.

Example 14 Let us consider the sequence database of Table 1, and the prefixes 〈A〉, 〈AB〉
and 〈ABC〉. We have:

– SDB1|<A> = {(1, 〈BCBC〉), (2, 〈BC〉), (3, 〈B〉)}.
– SDB1|<AB> = {(1, 〈CBC〉), (2, 〈C〉), (3, 〈〉)}.
– SDB1|<ABC> = {(1, 〈BC〉), (2, 〈〉)}.

Pei et al. [20] proposed PREFIXSPAN, an efficient algorithm for mining sequential
patterns based on the concept of projected databases. It proceeds by dividing the initial
database into smaller ones projected on the frequent subsequences obtained so far; only
their corresponding suffixes are kept. Then, sequential patterns are mined in each projected
database by exploring only locally frequent items.

Algorithm 1 depicts the pseudo-code of PREFIXSPAN. Initially, procedure
PREFIXSPANPROJ (line 2) is called with an empty prefix, the initial database and the
minimum support minsup. Then, the SDB is scanned once (line 3) to find all frequent
items which will be considered later as prefix to form valid sequential patterns. Finally,
each frequent item is appended to the current prefix α (line 5) and then PREFIXSPANPROJ

is relaunched recursively in order to extend the current pattern (line 7). By this way, when
PREFIXSPAN algorithm terminates, it provides the whole set of frequent patterns.

Example 15 Let us consider the sequence database of Table 1 with minsup = 2. Figure 1
illustrates the execution of PREFIXSPAN on SDB1. It starts by scanning SDB1 to find all

Constraints

Fig. 1 Mining sequential patterns from SDB1 using PREFIXSPAN (minsup = 2)

the frequent items, each of them is used as a prefix to get projected databases. For SDB1,
we get 3 disjoint subsets w.r.t. the prefixes 〈A〉, 〈B〉, and 〈C〉. For instance, SDB1|〈A〉
consists of 3 suffix sequences: {(1, 〈BCBC〉), (2, 〈BC〉), (3, 〈B〉)} (see SDB1|〈A〉 Fig. 1).
Considering the projected database SDB1|<A>, its locally frequent items are B and C.
Thus, SDB1|<A> can be recursively partitioned into 2 subsets w.r.t. the two prefixes 〈AB〉
and 〈AC〉. The 〈AB〉- and 〈AC〉- projected databases can be constructed and recursively
mined similarly. The processing of an α-projected database terminates when no frequent
subsequence can be generated which is the case of the prefixes respectively 〈ABC〉, 〈AC〉,
〈BBC〉, 〈BC〉 and 〈C〉 (Fig. 1). As no frequent item exists in their corresponding projected
databases, the mining process terminates.

In order to determine if a sequence γ is frequent, we have to compute its support in the
sequence database. To ensure an incremental computation, the support can be computed
from the projected database w.r.t some prefix of γ . Proposition 1 establishes the support
count of a sequence γ = concat (α, β) which is equal to the support of β in SDB|α [20].

Proposition 1 (Support count of a sequence) The support count of a sequence γ in SDB

with prefix α and suffix β s.t. γ = concat (α, β) is given by supSDB(γ) = supSDB|α (β).

This proposition ensures that only patterns grown from α need to be considered for the
support count of a sequence γ . Furthermore, only those suffixes with prefix α should be
counted.

Example 16 Let us consider the sequence γ = 〈ABC〉. Suppose that α = 〈AB〉,
according to Proposition 1, we have supSDB1(γ) = supSDB1(concat (〈AB〉, 〈C〉)) =

Constraints

supSDB1|〈AB〉(〈C〉). From example 15, we have SDB1|〈AB〉 = {(1, 〈CBC〉), (2, 〈C〉),
(3, 〈〉)}. As item C occurs only in the first and the second sequences in SDB|〈AB〉, then
supSDB1(〈ABC〉) = supSDB1|〈AB〉(〈C〉)=2.

2.4 CSP and global constraints

A Constraint Satisfaction Problem (CSP) consists of a set X of n variables, a domain D
mapping each variable Xi ∈ X to a finite set of values D(Xi), and a set of constraints
C. An assignment σ is a mapping from variables in X to values in their domains: ∀Xi ∈
X, σ(Xi) ∈ D(Xi). A constraint c ∈ C is a subset of the cartesian product of the domains
of the variables that are in c. The goal is to find an assignment such that all constraints are
satisfied.

CSPs solving Constraint solvers interleave constraints filtering and search. The search
algorithm enumerates the values of the variables until it finds all the solutions. Filtering
algorithms are called usually at each node of the search tree, to remove as many inconsis-
tent values as possible; it tries to prevent the solver to explore an exponential number of
combinations. Each time some variable domain is modified, filtering algorithms are system-
atically applied to remove other inconsistent values. The solving process terminates when a
solution is found or proving that no solution exists. In order to be effective, each constraint
filtering algorithm should remove as many variable domain values as possible and possibly
achieve domain consistency (also referred to as generalized-arc consistency).

Definition 9 (Domain consistency) A constraint c on X is domain consistent, if and only
if, for every Xi ∈ X and for every di ∈ D(Xi), there is an assignment σ satisfying c such
that σ(Xi) = di . Such an assignment is called a support.

Global constraints provide shorthands to often-used combinatorial substructures. More
precisely, a global constraint [27] is a constraint that captures a relation between a non-
fixed number of variables. Let us take the All-Different constraint on variables X =
{X1, . . . , Xn} where the values taken by variables must be pairwise different. Suppose
that we have a CSP with 3 variables X1, X2 and X3 and an All-Different constraint on
{X1, X2, X3} with D(X1) = D(X2) = {a, b} and D(X3) = {a, b, c}. This All-Different
constraint can be encoded simply with three binary constraints X1 �= X2, X2 �= X3 and
X1 �= X3. It is clear from the context that each of these three constraints is domain con-
sistent. But we can also encode the All-Different constraint with only one global constraint
AllDifferent(X1, X2, X3) which ensures the pairwise differences. With this single
constraint, we can see that the value X3 = a (resp. X3 = b) cannot be extended with
an assignment satisfying AllDifferent(X1, X2, X3). Note that the unique constraint
AllDifferent(X1, X2, X3) was able to reduce the domains, while its decomposition
{X1 �= X2, X2 �= X3, X1 �= X3} does not reduce anything. This example shows
clearly the filtering effectiveness of working on a single constraint encoding the considered
combinatorial structure instead its decomposition.

Global constraints have been firstly used in sequential pattern mining through the exists-
Embedding constraints (one per sequence) which verify the inclusion relation directly on
the sequence [18]. Later, [12] proposed the Prefix-Projection global constraint which has
successfully encoded both the subsequence relation as well as the frequency constraint.
More details are given in Section 3. In the following, we present two global constraints that
will serve to encode item membership and regular expression constraints (see Section 2.2).

Constraints

Let X = 〈X1, X2, ..., Xn〉 be a sequence of n variables. Let V be a set of values, l and u

be two integers s.t. 0 ≤ l ≤ u ≤ n, the constraint Among(X, V, l, u) states that each value
a ∈ V should occur at least l times and at most u times in X [4]. Given a deterministic finite
automaton A, the constraint Regular(X, A) ensures that the sequence X is accepted by A

[23].

3 Related works

This section provides a critical review of ad hoc methods and CP approaches for SPM and
top-k SPM.

3.1 Ad hoc methods for SPM

GSP [29] was the first algorithm proposed to extract sequential patterns. It uses a generate-
and test approach. It generates candidates of frequent (k + 1)-sequences by performing a
join on the frequent k-sequences. Later, two major classes of methods have been proposed:

– Depth-first search based on a vertical database format e.g. SPADE [37] or SPAM [2].
Each item, and consequently, each sequence is represented using its id list where each
id corresponds to an item and a time-stamp. The support of a sequence is then obtained
by joining the idlist of its items.

– Projected pattern growth such as PrefixSpan [20] and its extensions, e.g. CloSpan
for mining closed sequential patterns [34] or Gap-BIDE [15] tackling the gap
constraint.

Several specialised methods have addressed the problem of constrained SPM. Srikant
and Agrawal [29] have generalized the scope of sequential pattern mining [1] to include
time constraints and sliding time windows. Garofalakis et al. [9] have proposed regular
expressions as constraints for SPM. Later, Trasarti et al. [30] has proposed Sequence Min-
ing Automata (SMA), an approach based on a specialized kind of Petri Nets. Two variants
of SMA were proposed: SMA-1P (SMA one pass) and SMA-FC (SMA Full Check). SMA-1P
processes by means of the SMA all sequences one by one, and enters all resulting valid pat-
terns in a hash table for support counting, while SMA-FC allows frequency based pruning
during the scan of the database. CloSpan [34] and Gap-BIDE [15] are both exten-
sions of PrefixSpan to mine closed frequent patterns and closed frequent patterns with gap
constraints. cSpade [36] is an extension of SPADE algorithm incorporating constraints
(max-gap, max-span, length). Finally, Pei et al. [22] provide a survey for other constraints
such as regular expressions, length and aggregates.

However, none of these approaches is generic. Indeed, adding new constraints usually
amounts to changing the data-structures used in the core of the algorithm, and combining
these new constraints often require new developments.

3.2 Existing CP methods for SPM

Following the work of Guns et al. [10] for itemset mining, several methods have been pro-
posed to mine sequential patterns using CP. Coquery et al. have proposed in [6] a first
SAT-based model for discovering sequence patterns with explicit wildcards in a single
sequence under different types of constraints (e.g. frequency, maximality, closedness). A
wildcard represents the presence of exactly one arbitrary symbol in that position in the

Constraints

sequence. Kemmar et al. [14] have also studied patterns with explicit wildcards, but in a
database of sequences. They show how some constraints dealing with individual patterns
(e.g. frequency, size, gap, regular expressions) and constraints defining more complex pat-
terns such as relevant subgroups [19] and top-k patterns can be modeled using a CSP.
However, the sequential patterns with non-contiguous2 items are modeled using empty
items as wildcards. For instance, if we consider our running example (Table 1), the two pat-
terns 〈A C〉 and 〈A C〉 are considered as different. Metivier et al. [16] have proposed a
CSP model for SPM. Each sequence is encoded by an automaton capturing all subsequences
that can occur in it. This CP approach easily enables to address different constraints on pat-
terns, but it is not enough effective to handle large sequence databases (≥ 500 sequences).
Recently, Negrevergne et al. have presented in [18] two CP encodings for SPM. The first one
uses a global constraint to encode the subsequence relation (denoted global-p.f), while
the second one encodes explicitly this relation using additional variables and constraints
(denoted decomposed-p.f).

All these proposals use reified constraints to encode the database. A reified constraint
associates a boolean variable to a constraint reflecting whether the constraint is satisfied
(value 1) or not (value 0). For each sequence s of SDB, a reified constraint, stating whether
(or not) the unknown pattern p is a subsequence of s, is imposed: (Ss = 1) ⇔ (p �
s). A great consequence is that the encoding of the frequency measure is straightforward:
f req(p) = ∑

s∈SDB Ss . But such an encoding has a major drawback since it requires
(m = #SDB) reified constraints to encode the whole database. This constitutes a strong
limitation of the size of the databases that could be managed.

Most of these proposals encode the subsequence relation (p � s) using variables
Poss,j (s ∈ SDB and 1 ≤ j ≤ �) to determine a position (or an occurrence) where p

occurs in s. When only few occurrences are possible, as in sequence patterns with explicit
wildcards, this can be performed with a disjunctive constraint over all possible occurrences
(see [14] for more details). But for standard sequences (the setting we address in this paper),
the number of such occurrences is exponential, thus prohibiting a direct encoding and mak-
ing the search algorithm computationally expensive. Moreover, it requires a large number
of additional variables (m × �).

To address this drawback, Negrevergne et al. have proposed in [18] a global con-
straint exists-embedding to encode the subsequence relation. They use the concept
of projected frequency to keep only locally frequent items. However, to recompute and to
keep frequent symbols during search, they introduce for every sequence an auxiliary inte-
ger variable used to keep items that appear after the current prefix. To avoid searching
over infrequent items, a specific search routine (based on domains of auxiliary variables)
are used, making the integration quite complex (see Section 4.5 for more details). More-
over, the proposed encoding still relies on reified constraints and requires to impose m

exists-embedding global constraints. Our approach does not require any extra vari-
ables nor a specific branching strategy. Moreover, the global constraint Prefix-Projection
will encode the anti-monotonicity of frequency (see Definition 6) in a simple and elegant
way, while existing CP methods for SPM have difficulties to handle this property (see
Section 4.2(c) for a more detailed study).

So, we propose in the next section the Prefix-Projection global constraint that fully
exploits the principle of projected databases to encode both the subsequence relation and
the frequency constraint. Prefix-Projection does not require any reified constraints nor any

2We say that a pattern is non-contiguous if it contains at least one wildcard before the last item.

Constraints

extra variables to encode the subsequence relation. As a consequence, usual SPM constraints
(see Section 2.2) can be encoded in a straightforward way using directly the elementary
constraints and/or the global constraints provided by the CP solver.

3.3 Ad hoc methods for top-k SPM

Finding the top-k patterns has been widely considered for itemsets [5, 11]. New approaches
for mining top-k frequent closed patterns based on the FP-tree technique have also been
proposed [24, 33]. For sequential data, Tzvetkov et al. have proposed in [31] a first algo-
rithm, called TSP, for mining top-k sequential patterns or top-k closed sequential patterns of
length no less than �min. TSP uses a pattern-growth approach based on PrefixSpan [20]
to explore the search space of patterns. It proceeds in three steps: (1) initially, build a small,
limited number of projected databases for each prefix length l (l < �min), (2) then, gradu-
ally relax the limitation on the number of projected databases that are built, and (3) repeat
the mining again. Each time a projected database SDB|α is reached, where #α = (�min−1),
SDB|α is computed completely and the mined sequences are used to raise minsup. The
algorithm stops when all projected databases at level �min with support greater than minsup

are mined completely. The downside of this approach is that projecting/scanning databases
repeatedly is costly, and that cost becomes huge for dense databases. Later, Fournier-Viger
et al. have proposed in [8] an efficient algorithm, called TKS, for mining top-k sequential
patterns. TKS uses the vertical database representation and candidate-generation procedure
of SPAM. It also uses an additional list that maintains at any time the set of patterns that can
be extended to generate candidates. This list is exploited for support raising, by extending
the pattern having the highest support first. Furthermore, to reduce the number of candi-
dates when extending a sequential pattern, TKS records in a hash table the list of items that
become infrequent when minsup is raised by the algorithm. Moreover, a second pruning
mechanism based on Precedence Map structure is also exploited (see [8] for more details).

Our top-k approach differs from the above algorithms in the raising method. Thanks to
the Prefix-Projection global constraint, we propose an effective strategy for initializing the
top-k patterns with the most promising ones, so that high support patterns can be derived ear-
lier. Unlike specialized methods like TSP or TKS, our approach allows to define constraints
on top-k patterns as minimum size, item membership and regular expression constraints.

4 Prefix-projection global constraint

This section presents the Prefix-Projection global constraint for the SPM problem.
Section 4.1 defines the Prefix-Projection global constraint and presents the CSP modeling.
Section 4.2 shows how the filtering of global constraint Prefix-Projection can take advantage
of the anti-monotonicity of the frequency measure (see Proposition 4) to reduce the variable
domains. Sections 4.3 and 4.4 detail respectively the construction of projected databases
and the filtering algorithm of Prefix-Projection.

4.1 CSP modeling for SPM

(a) Variables and domains. Let P be the unknown pattern of size � we are looking for.
The symbol � (� /∈ I) stands for an empty item and denotes the end of a sequence.
We encode the unknown pattern P of maximum length � with a sequence of � vari-
ables 〈P1, P2, . . . , P�〉. Each variable Pj represents the item in the j th position of the

Constraints

sequence. The size � of P is determined by the length of the longest sequence of SDB.
The domains of variables are defined as follows: (i) D(P1) = I to avoid the empty
sequence, and (ii) ∀i ∈ {2 . . . �},D(Pi) = I ∪ {�}. Patterns with k < � symbols are
represented with k items from I; the (� − k) last positions are filled with the empty
item �. To avoid enumerating the same pattern with � values in different positions,
we impose that ∀i ∈ {2..(� − 1)}, (Pi = �) → (Pi+1 = �). Thus, empty items can
only appear at the end.

(b) Definition of Prefix-Projection. The global constraint Prefix-Projection encodes both
subsequence relation and minimum frequency constraint directly on the data.

Definition 10 (Prefix-Projection global constraint) Let P = 〈P1, P2, . . . , P�〉 be a
pattern of size �. The Prefix-Projection(P, SDB, minsup) constraint holds if and only
if there exists an assignment σ = 〈d1, ..., d�〉 ∈ D(P1) × . . . × D(P�) of variables of
P such that supSDB(〈d1, ..., d�〉) ≥ minsup.

Example 17 Consider the sequence database SDB1 given in Table 1 with minsup =
2. Let P = 〈P1, P2, P3〉 (� = 3) with D(P1) = I and D(P2) = D(P3) = I ∪ {�}.
Consider 2-length sequential pattern 〈AB〉. Since � = 3, we have σ(P1) = A, σ(P2) =
B, and σ(P3) = �. Prefix-Projection(P, SDB1, 2) holds since supSDB1(P) ≥ 2.

Proposition 2 establishes a necessary and sufficient condition to ensure that an
assignment σ satisfies the Prefix-Projection global constraint.

Proposition 2 (Prefix-Projection Consistency) A Prefix-Projection(P, SDB,

minsup) constraint has a solution if and only if there exists an assignment σ =
〈d1, ..., d�〉 of variables of P s.t. SDB|σ has at least minsup suffixes of σ : #SDB|σ ≥
minsup.

Proof From proposition 1, we have straightforwardly supSDB(σ) = supSDB|σ (〈〉) =
#SDB|σ . Thus, suffixes of SDB|σ are supports of σ in the constraint Prefix-
Projection(P, SDB, minsup), provided that #SDB|σ ≥ minsup.

Proposition 2 shows that any sequence pruned from SDB|α does not need to be
considered when computing the support of a sequential pattern γ grown from α later.
Thus, we can stop growing α, once we find that α is infrequent.

Example 18 Let us consider the constraint Prefix-Projection(P, SDB1, 3) s.t. P =<

P1, P2, P3 >. Solutions of this constraint is given by the set of assignments σ s.t.
supSDB1(σ) = #SDB1|σ ≥ 3, we get the following solutions: 〈A��〉, 〈B��〉,
〈C��〉, 〈AB�〉 and 〈BC�〉.

(c) Handling other SPM constraints: Constraints that put restrictions on the structure
of the pattern can be encoded in a straightforward way using directly the elementary
constraints and/or the global constraints provided by the CP solver. Examples are given
bellow:

– Minimum size constraint: minSize(P, �min) ≡ ∧i=�min

i=1 (Pi �= �)

– Maximum size constraint: maxSize(P, �max) ≡ ∧i=�
i=�max+1(Pi = �)

Constraints

– Item constraint: let V be a subset of items, l and u two integers s.t. 0 ≤ l ≤ u ≤ �.
item(P, V) ≡ ∧

t∈V Among(P, {t}, l, u) enforces that items of V should occur at least
l times and at most u times in P . To forbid items of V to occur in P , l and u must be
set to 0.

– Regular expression constraint: let Areg be the deterministic finite automaton encoding
the regular expression exp. reg(P, exp) ≡ Regular(P,Areg).

However, constraints that impose a restriction on subsequence relation (see Defini-
tion 2), by restricting for example the distance allowed between items in the sequence,
cannot be directly combined with our Prefix-Projection global constraint. Indeed, changing
the subsequence relation requires revisiting the filtering algorithm of the Prefix-Projection
global constraint. This is the case for the gap constraint, which imposes restrictions
on the distance between two consecutive items in the patterns (for more details, see
[13]).

4.2 Consistency checking and filtering

(a) Maintaining a local consistency. SPM is a challenging task due to the exponential
number of candidates that should be parsed to find the frequent patterns. For instance,
we have O(nk) potential candidate patterns of length at most k in a sequence of length
n. Furthermore, the NP-hardness of mining maximal3 frequent sequences was estab-
lished in [35] by proving the #P-completeness of the problem of counting the number
of maximal frequent sequences. Hence, ensuring Domain Consistency (DC) for Prefix-
Projection i.e., finding, for every variable Pj , a value dj ∈ D(Pj), satisfying the
constraint is NP-hard.

So, the filtering of Prefix-Projection constraint maintains a consistency lower than
DC. This consistency is based on specific properties of the projected databases (see
Proposition 3), and anti-monotonicity of the frequency constraint (see Proposition 4),
and resembles forward-checking regarding Proposition 3. Prefix-Projection is consid-
ered as a global constraint, since all variables share the same internal data structures
(i.e., pseudo projected databases PSDB) that are maintained and exploited during
filtering.

(b) Detecting inconsistent values. The following proposition characterizes values of
unassigned (i.e. free) variable Pi+1 that are consistent with the current partial assign-
ment of variables 〈P1, ..., Pi〉. In our approach, we assume a fixed search order based
on a lexicographic ordering of variables of P , i.e., variable P1 is assigned first, then
P2, and so on.

Proposition 3 (Consistent values) Let σ 4 = 〈d1, . . . , di〉 be a consistent par-
tial assignment of i variables 〈P1, . . . , Pi〉 (i.e., the current frequent prefix), and
Pi+1 ∈ P be a free variable. A value d ∈ D(Pi+1) appears in a solution for
Prefix-Projection(P, SDB, minsup) if and only if d is a frequent item in SDB|σ :

#{(sid, γ)|(sid, γ) ∈ SDB|σ ∧ 〈d〉 � γ } ≥ minsup

3A sequential pattern p is maximal if there is no sequential pattern q such that p � q.
4We indifferently denote σ by 〈d1, . . . , di〉 or by 〈σ(P1), . . . , σ (Pi)〉.

Constraints

Proof Let σ be a consistent partial assignment and Pi+1 ∈ P be a free variable. Sup-
pose that value d ∈ D(Pi+1) occurs in SDB|σ more than minsup. From proposition
1, we have supSDB(concat (σ, 〈d〉)) = supSDB|σ (〈d〉). Hence, the partial assignment
σ ∪ 〈d〉 satisfies the constraint, so d ∈ D(Pi+1) participates in a solution.

Proposition 4 shows how the Prefix-Projection global constraint exploits the anti-
monotonicity of frequency to prune inconsistent values from the domains of free
variables in P w.r.t. the current partial assignment σ .

Proposition 4 (Prefix-Projection Filtering rules) Let σ = 〈d1, . . . , di〉 be a consistent
partial assignment of i variables 〈P1, . . . , Pi〉 (i.e., the current frequent prefix), and
Pi+1 ∈ P be a free variable. All values d ∈ D(Pi+1) that are locally not frequent
in SDB|σ can be pruned from the domain of variable Pi+1. Moreover, these values d

can also be pruned from the domains of free variables Pj with j ∈ [i + 2, . . . , �].

Proof Let σ = 〈d1, . . . , di〉 be a consistent partial assignment of i variables
〈P1, . . . , Pi〉. Let d ∈ D(Pi+1) s.t. σ ′ = concat (σ, 〈d〉). Suppose that d is not frequent
in SDB|σ . According to proposition 1, supSDB|σ (〈d〉) = supSDB(σ ′) < minsup,
thus σ ′ is not frequent. So, d can be pruned from the domain of Pi+1.

Suppose that the partial assignment σ has been extended to
concat (σ, α), where α corresponds to the assignment of variables Pj

(with j > i). If d ∈ D(Pi+1) is not frequent, it is straightforward that
supSDB|σ (concat (α, 〈d〉)) ≤ supSDB|σ (〈d〉) < minsup. Thus, if d is not frequent in
SDB|σ , it will be also not frequent in SDB|concat (σ,α). So, d can be pruned from the
domains of Pj with j ∈ [i + 2, . . . , �].

Example 19 Consider again our running example of Table 1 with minsup = 2. Let
P = 〈P1, P2, P3〉 with D(P1) = I and D(P2) = D(P3) = I ∪ {�}. Let σ be a partial
assignment s.t. σ(P1) = A, Pref ix − Projection(P, SDB, minsup) will remove
values A and D from D(P2) and D(P3), since the only locally frequent items in
SDB1|〈A〉 are B and C. Consequently, we obtain D(P2) = D(P3) = {�, B, C}. Now,
if we consider σ(P2) = B, Pref ix − Projection(P, SDB, minsup) will remove B

from D(P3) since B is not frequent in SDB1|〈AB〉. Finally, we get the two consistent
values for the variable P3 which are � and C. So, assigning variable P3 leads to two
sequential patterns: 〈AB�〉 = 〈AB〉 and 〈ABC〉.

(c) Ensuring the anti-monotonicity of frequency. Proposition 4 guarantees that any
value (i.e. item) d ∈ D(Pi+1) present but not frequent in SDB|σ does not need to be
considered when extending σ , thus avoiding searching over it. Clearly, our global con-
straint encodes the anti-monotonicity of frequency in a simple and elegant way, while
existing CP methods for SPM have difficulties to exploit efficiently this property.
Indeed, they require explicit mechanisms to prove that a given pattern p is infrequent
(i.e., to determine if a conflict is encountered because of the frequency constraint) and
to avoid future patterns p′ such that p � p′. For instance, [6] uses nogoods to avoid
generating patterns which are super-sequences of infrequent ones. Negrevergne et al.
propose in [18] to adapt the propagator associated to exists-embedding global
constraint so that it exports the items that still appear after the current prefix. This is

Constraints

achieved by introducing an auxiliary integer variable Xi for every sequence s in the
SDB, whose domain represents these items. Finally, to avoid searching over infre-
quent items, they define a custom search routine (brancher) over the P variables. This
brancher first computes the local frequency of each item based on the domains of the
Xi variables and only branches on the frequent ones (see Section 4.5 for more details).
This makes the integration quite complex. Our approach does not require any extra
variables nor a specific branching strategy and tackles the frequency constraint as a
single constraint performing a global filtering by exploiting the particular structure of
frequent patterns.

4.3 Building the projected databases

The key issue of our approach lies in the construction of the projected databases. When
projecting a prefix, instead of storing the whole suffix as a projected subsequence, one can
represent each suffix by a pair (sid, start) where sid is the sequence identifier and start is
the starting position of the projected suffix in the sequence sid. For instance, let us consider
the sequence database of Table 1. As shown in Example 15, SDB|〈A〉 consists of 3 suffix
sequences: {(1, 〈BCBC〉), (2, 〈BC〉), (3, 〈B〉)}. By using the pseudo-projection, SDB|〈A〉
can be represented by the following three pairs: {(1, 2), (2, 3), (3, 2)}. This is the principle
of pseudo-projection, adopted in PrefixSpan, exploited during the filtering step of our
Prefix-Projection global constraint. Algorithm 2 details this principle. It takes as input a
set of projected sequences ProjSDB and a prefix α. The algorithm processes all the pairs
(sid, start) of ProjSDB one by one (line 2), and searches for the lowest location of α in
the sequence s corresponding to the sid of that sequence in SDB (lines 6-8).

Example 20 Let us consider the SDB1 of Table 1 with a prefix α = 〈AB〉. Algorithm 2 pro-
cesses the four sequences of SDB1. For the first sequence s1, it looks for the lowest position
that matches A (s1[0] = A), and then, the lowest one that matches B (s1[1] = B). Since the
two items of α appear in s1, then it saves the first entry of the pseudo-projected database
SDB1|〈AB〉 which is (1, 2), where 1 represents the sequence identifier and 2 corresponds to
the first position in s1 after the current prefix.

Proposition 5 (Time complexity of pseudo-projection) In the worst case, PROJECTSDB
processes all the items of all sequences. So, the time complexity is O(� × m), with m =
#SDB and � is the length of the longest sequence in SDB.

Constraints

The worst case space complexity of pseudo-projection is O(m), since we need to store
for each sequence only a pair (sid, start), while for the standard projection the space com-
plexity is O(m × �). Clearly, the pseudo-projection takes much less space than the standard
projection.

4.4 Filtering algorithm

Algorithm 3 describes the pseudo-code of the filtering algorithm of the Prefix-Projection
constraint. It is an incremental filtering algorithm that should be run when one of the
P variables is assigned according to a lexicographic ordering of variables of P (i.e.
〈P1, P2, . . . , P�〉). It exploits internal data-structures enabling to enhance the filtering algo-
rithm. More precisely, it uses an incremental data structure, denoted PSDB, that stores the
intermediate pseudo-projections of SDB, where PSDBi (i ∈ [0, . . . , �]) corresponds to
the σ -projected database of the current partial assignment σ = 〈σ(P1), . . . , σ (Pi)〉 (also
called prefix) of variables 〈P1, . . . , Pi〉, and PSDB0 = {(sid, 1)|(sid, s) ∈ SDB} is the
initial pseudo-projected database of SDB (case where σ = 〈〉). It also uses a hash table
indexing the items I into integers (1 . . . #I) for an efficient support counting over items (see
function GETFREQITEMS). More precisely, suppose we have n items. In the hash-table, the
n items (i1, ..., in) are matched with the sequence of integers (1..n) (i.e., item ij is matched
with integer j). It enables to have an immediate access to our data structures. In function
GETFREQITEMS, for example, SupCount[a] uses the index of a enabling a direct access.

Constraints

Fig. 2 The serach tree associated to Section 4.5.1

Algorithm 3 takes as input the database SDB, a minimum support threshold minsup,
the index i of the last assigned variable Pi , the current partial assignment σ =
〈σ(P1), . . . , σ (Pi)〉, and the variables P . It starts by checking if the last variable Pi is
assigned to � (line 1). In this case, the end of sequence is reached (since value � can only
appear at the end) and the sequence 〈σ(P1), . . . , σ (Pi)〉 constitutes a frequent pattern in
SDB; hence the algorithm sets the remaining (� − i) unassigned variables to � and returns
true (lines 2-4). Otherwise, the algorithm computes incrementally PSDBi from PSDBi−1
by calling function PROJECTSDB (see Algorithm 2). Then, it checks in line 6 whether the
current assignment σ is a consistent or not for the constraint (see Proposition 2). This is
done by computing the size of PSDBi . If this size is less than minsup, we stop growing σ

and we return false.
The lines from 8 to 12 represent the application of proposition 4 on the remaining free

variables of P . First, the algorithm computes the set of locally frequent items FI in PSDBi

by calling function getFreqItems (line 8). This Function processes all the entries of the
pseudo-projected database one by one, counts the number of first occurrences of items a

(i.e. SupCount[a]) in each entry (sid, start), and keeps only the frequent ones (lines 13-
21). This is done by using ExistsI tem data structure. After the whole pseudo-projected
database has been processed, the frequent items are returned (line 22). Second, lines 9 to
11 remove infrequent items from the domains of free variables Pj with j ≥ (i + 1), thus
avoiding searching over not frequent items.

The next proposition 6 states that FILTER-PREFIX-PROJECTION algorithm establishes
domain consistency on the variable Pi+1 succeeding the current frequent prefix.

Proposition 6 (Domain consistency) Let σ = 〈d1, . . . , di〉 be a consistent partial assign-
ment of i variables 〈P1, . . . , Pi〉 (i.e., the current frequent prefix), and Pi+1 ∈ P be a
free variable. Algorithm FILTER-PREFIX-PROJECTION enforces domain consistency of the
variable Pi+1 on the Prefix-Projection constraint.

Proof Since that σ is consistent, then from Proposition 2, we have #SDB|σ ≥ minsup.
Algorithm FILTER-PREFIX-PROJECTION removes from the domain of Pi+1 all values

Constraints

which are not frequent in #SDB|σ , and thus keeps only consistent values as provided by
Proposition 3. Consequently, FILTER-PREFIX-PROJECTION enforces domain consistency
of the variable Pi+1.

Proposition 7 states the time and space complexities of FILTER-PREFIX-PROJECTION

algorithm.

Proposition 7 (complexities of filtering) In the worst case, filtering with Prefix-Projection
global constraint can be achieved in O(m × � + m × d + � × d). The worst case space
complexity of Prefix-Projection is O(m × �).

Proof Let � be the length of the longest sequence in SDB, m = #SDB, and d = #I .
Computing the pseudo-projected database PSDBi can be done in O(m × �): for each
sequence (sid, s) of SDB, checking if σ occurs in s is O(�) and there are m sequences.
The total complexity of function GETFREQITEMS is O(m × (� + d)). Lines 9-11) can be
achieved in O(� × d). So, the whole complexity is O(m × � + m × (� + d) + � × d) =
O(m×�+m×d+�×d). The space complexity of the filtering algorithm lies in the storage of
the PSDB internal data structure. For each sequence of length �, we store only the pseudo-
projections of prefixes of that sequence. Since we can have at most � prefixes, we have
to store � pseudo-projected databases in the worst case. In addition, each pseudo-projected
database requires O(m). So, the worst case space complexity is O(m × �).

According to Proposition 6, Prefix-Projection global constraint enumerates all sequential
patterns within a backtrack-free search (no fails).

Proposition 8 (Backtrack-free) Suppose that the variables 〈P1, . . . , P�〉 are enumerated
following their lexicographic order P1 → P2 → · · · → P�. Extracting the total number of
frequent sequential patterns, noted N , is backtrack free with a complexity O(N × � × (m ×
� + m × d + � × d)).

Proof Using Proposition 6, the adopted ordering of the variables ensures domain consis-
tency on the next variable to enumerate. It follows that extracting the whole sequential
patterns is backtrack-free. Since that there is no fail in the search tree, the number of
leafs is N , and the search tree size is bounded by O(N × �). Since that at each node of
the search tree, the solver runs only FILTER-PREFIX-PROJECTION filtering algorithm, the
given polynomial complexity, on the number of patterns N , follows immediately.

4.5 Running examples

4.5.1 Pref ix − Projection filtering and search

Let us take the sequence database given in Table 1 with minsup = 2. Let P = 〈P1, P2, P3〉
with D(P1) = I and D(P2) = D(P3) = I ∪ {�}. Figure 2 depicts the search tree
explored w.r.t. the filtering achieved by Prefix-Projection global constraint. We adopt a
variable selection strategy based on the lexicographic ordering of variables: P1 is assigned
first, then P2 and finally P3. For value selection strategy, the smallest value in the domain
(w.r.t. its lexicographic order) is selected first. Initially, before launching the algorithm

Constraints

FILTER-PREFIX-PROJECTION, infrequent items are removed from the domains of all vari-
ables. Hence, the first variable P1 will be assigned to A, B and then C. The filtering
algorithm is effective if and only if at least the first variable (P1) is assigned. Suppose
that σ(P1) = A, the algorithm computes the projected database SDB1|〈A〉 from the initial
database SDB1 (line 5): PSDB1 = {(1, 1), (2, 2), (3, 1)}. Then, it ensures that the current
assignment is consistent (lines 6-7). If the current prefix σ appears more than minsup in the
database, the frequent items that allow to extend σ = 〈A〉 to a valid sequential patterns are
computed (line 8). Consequently, the infrequent items A and D are removed from D(P2)

and D(P3) (see example 19). There is a special case when a variable is assigned to the sym-
bol �. We suppose that after assigning P1 to A, the variable P2 is assigned to �. The pattern
is ended by this symbol. Consequently, all variables following P2 must be assigned to �
(line 1). Thus, we get the sequential pattern 〈A��〉 = 〈A〉.

4.5.2 Comparing prefix-projection vs global-pf

In this section, we illustrate a comparison between Pref ix −Projection global constraint
and the Reified Constraint Model proposed in [18] (and detailed in Section 3.2) in terms
of modelling and filtering power. For instance, let us take the sequential database given in
Table 1 with minsup = 3. Let P = 〈P1, P2, P3, P4, P5〉. Suppose that σ(P1) = B and
D(P2) = D(P3) = D(P4) = D(P5) = I ∪ {�}.

Table 2 compares the CP encodings for SPM of the two approaches. As depicted, our
approach requires only one constraint and four variables to model both the subsequence
and frequency constraints. In contrast, the reified model uses 8 constraints (i.e., C1, ..., C8)
and 8 additional variables: 4 boolean variables S1, ..., S4 (one per exists-embedding
reified global constraint), and 4 auxiliary integer variables X1, ..., X4 used to keep items
that appear after the current prefix. Let us detail the behaviour of the filtering and domain
reduction done by the two models on the current domains:

global-p.f:

– For constraints on the sequence-end (see line 1 of the global-p.f constraints),
as no variable Pj is assigned to �, no reduction is performed on the domains of
variables P .

– No reduction coming from embedding constraints is perfomed. Si cannot be
reduced because 〈B〉 appears in all sequences. Consequently, no reduction can
be done on variables P . Each auxiliary variable Xi (i ∈ 1, ..., 4), takes as a
domain the items appearing after the current prefix 〈B〉: D(X1) = {B,C,�},
D(X2) = {A,B,C,�}, D(X3) = {�}, D(X4) = {C,D,�}. We point out that
the domain reduction on X variables is specially dedicated to a custom search
routine (brancher) to avoid branching over infrequent items. In this case, only
item C is frequent, so, for the next variable, the brancher only branches on this
item.

– The frequency constraint does not apply any reduction, since that the S variables are
not instantiated.

– Thus, the global-p.f does not perform any domain reduction on P variables.

Pref ix − Projection:
By running the FILTER-PREFIX-PROJECTION filtering algorithm, several inconsistent

values will be pruned from the domains of variables P . Finally, we get the following new
domains: Pi ∈ {C,�} (i = 2, ..., 5).

Constraints

Ta
bl
e
2

C
P

en
co

di
ng

s
fo

r
SP

M
:P

re
fi

x-
Pr

oj
ec

tio
n

vs
g
l
o
b
a
l
-
p
.
f

Pr
ef

ix
-P

ro
je

ct
io

n
g
l
o
b
a
l
-
p
.
f

P
=

〈P
1
,
P

2
,
..

.,
P

5
〉%

un
kn

ow
n

pa
tte

rn
P

=
〈P

1
,
P

2
,
..

.,
P

5
〉%

un
kn

ow
n

pa
tte

rn

V
ar

ia
bl

es
D

(P
1
)
=

{B
},

D
(P

1
)
=

{B
},

&
D

(P
2
)
=

{A
,
B

,
C

,
D

,
�

}
D

(P
2
)
=

D
(P

3
)
=

D
(P

4
)
=

D
(P

5
)
=

{A
,
B

,
C

,
D

,
�

}
D

om
ai

ns
D

(P
3
)
=

{A
,
B

,
C

,
D

,
�

}
S

=
〈S 1

,
S

2
,
S

3
,
S

4
〉%

bo
ol

ea
n

va
ri

ab
le

s
fo

r
re

if
ie

d
co

ve
ri

ng
co

ns
tr

ai
nt

s

D
(P

4
)
=

{A
,
B

,
C

,
D

,
�

}
X

=
〈X

1
,
X

2
,
X

3
,
X

4
〉%

A
ux

ili
ar

y
va

ri
ab

le
s

to
av

oi
d

in
fr

eq
ue

nt
sy

m
bo

ls

D
(P

5
)
=

{A
,
B

,
C

,
D

,
�

}
D

(X
1
)
=

D
(X

2
)
=

D
(X

3
)
=

D
(X

4
)
=

{A
,
B

,
C

,
D

,
�

}
∀j

∈2
..

.4
,
C

j
−1

:P
j

=
�

→
P

j
+1

=
�

%
co

ns
tr

ai
nt

s
on

th
e

se
qu

en
ce

-e
nd

C
4
:e

x
i
s
t
s
-
e
m
b
e
d
d
i
n
g
(P

,
S
D

B
[1]

,
S

1
,
X

1
)

%
em

be
dd

in
g

co
ns

tr
ai

nt
s

C
on

st
ra

in
ts

P
r
ef

ix
−

P
r
oj

e
c
ti

o
n
(P

,
S
D

B
,
m

in
s
u
p
)

C
5
:e

x
i
s
t
s
-
e
m
b
e
d
d
i
n
g
(P

,
S
D

B
[2]

,
S

2
,
X

2
)

%
in

th
e

se
ns

e
S

i
←

→
∃e

s.
t.
P

�
S
D

B
[i]

C
6
:e

x
i
s
t
s
-
e
m
b
e
d
d
i
n
g
(P

,
S
D

B
[3]

,
S

3
,
X

3
)

C
7
:e

x
i
s
t
s
-
e
m
b
e
d
d
i
n
g
(P

,
S
D

B
[4]

,
S

4
,
X

4
)

C
8
:S

1
+

S
2
+

S
3
+

S
4

≥
3

%
m

in
im

um
fr

eq
ue

nc
y

co
ns

tr
ai

nt

Constraints

5 Mining the top-k sequential patterns

An important problem common not only to sequential patterns, but to frequent patterns in
general, concerns the huge size of the output, from which it is difficult for the user to retrieve
relevant informations. Consequently, for practical data mining, it is important to reduce the
size of the output. This is often done by fine-tuning the minsup threshold. However, in
practice, it is difficult for users to provide an appropriate threshold. To address this issue,
it was proposed to redefine the problem of mining sequential patterns as the problem of
mining top-k sequential patterns [31], where k is the desired number of frequent patterns to
be mined. top-k patterns are the k patterns optimizing an interestingness measure m, where
m usually refers to the frequency measure or any other measure. In this section, we consider
the problem of mining top-k sequential patterns of minimum size �min. First, we describe
a general algorithm for mining top-k sequential patterns based on two steps: initializing a
list of patterns M ordered by the support and raising the support threshold during search.
Then, we detail two strategies named top-k-init-BL and top-k-init-IPL related
to the first step of top-k SPM. Both strategies exploit the Prefix-Projection global constraint
to explore the pattern search space, however space traversal is different.

Definition 11 (top-k sequential patterns) Let k and �min be positive integers. A sequential
pattern p is a top-k sequential pattern of minimum size �min if there exists no more than
(k − 1) sequential patterns of minimum size �min with supports greater than its support.

Example 21 For the dataset of Table 1, with k = 5 and �min = 1, the top-5 sequential
patterns should be: 〈B〉 : 4, 〈A〉 : 3, 〈C〉 : 3, 〈AB〉 : 3, and 〈BC〉 : 3.

In this problem, the minimum support threshold minsup usually used in sequential pat-
tern mining is not known upfront, while the minimum size �min can be set to 1 if one is
interested in patterns of arbitrary size. So, an algorithm for top-k SPM cannot use a fixed
minsup threshold to prune the search space. Therefore, the problem is more difficult. In

Constraints

consequence, inferences on minsup can be made based on patterns identified so far during
search.

5.1 The top-k-PP algorithm

Algorithm 4 describes a general approach for computing top-k sequential patterns of min-
imum size �min. It takes as input a CSP �, a sequence database SDB, and two strictly
positive integers k and �min. It has as output the set M of top-k sequential patterns contained
in SDB.

Let solverNext(�, SDB, minsup) be a function which searches for a next valid solution
(i.e., valid sequential pattern satisfying the constraints system �). top-k-PP exploits the
Prefix-Projection global constraint to explore the pattern search space. It performs two basic
steps: (i) initializing a list of patterns M ordered by the support (line 3), and (ii) raising
the support threshold during search (line 5). The first step aims at computing the k first
sequential patterns (i.e. a set of potential top-k patterns) of minimum size �min and insert
them in a list of patterns M ordered according to their support. This internal list is used
to maintain the top-k patterns found until now. Our objective in this step is to find the
most promising patterns so that the second step will be faster while not missing any top-k
pattern.

Support threshold raising step Since the minsup threshold is unknown, the mining
process should start with minsup = 0, raise it progressively during the process, and
then use the raised minsup to prune unpromising branches in the search space. Proce-
dure top-k-SupportRaising details the minsup-raising process. At the beginning,
minsup is set to 0 (line 2). As soon as k sequential patterns with size no less than �min

are collected, minsup is set to the support of the least frequent pattern M (line 7). There-
after, each time a new frequent pattern P of minimum size �min is found (line 8), it is
inserted in M (line 9), patterns that are not top-k are removed from M (cf. procedure
top-k-update, line 10), and minsup is raised to the support of the least frequent pattern
in M (line 11). The search stops when no more pattern with a support higher than or equal
to minsup can be generated, which means that it has found the top-k sequential patterns of
minimum size �min.

Constraints

5.2 Strategies for initializing the top-k listM

The great interest of minsup-raising process of Algorithm 4 is that raising dynamically
minsup during search will refine the pruning condition leading to more and more powerful
pruning of the search space. However, such approach is largely dependent on the way the
minsup is initiated. If minsup is initiated with very low value, the search space will be
huge and it is likely to find many patterns with pretty low support. This will lead to the slow
raise of minsup. Thus, the major issue is how to raise minsup as quickly as possible. As
minsup is initialized to the support of the least frequent pattern in M computed during the
first step of Algorithm 4, the way these k first patterns are generated can greatly impact the
minsup-raising process. In the following, we describe two strategies for initializing top-k
list M (see Algorithm 5).

a) Base-line strategy. Function top-k-init-BL5 gives the pseudo-code of the basic
strategy. In this strategy, we search for the k first sequential patterns of minimum
size �min using a depth-first traversal of the search space (lines 1-3). Whenever a new
sequential pattern is identified (line 2), it gets inserted to the list of patterns M ordered
according to their support. Once k patterns are found, the exploration of the search tree
continue with the procedure top-k-SupportRaising. This strategy has poor per-
formances because the search space is too large (see Section 6.8). It is thus necessary
to find patterns with high support first in order to raise minsup more quickly.

b) Generating the most promising patterns. To raise minsup more quickly, one can
first mine the most promising patterns so that high support patterns can be derived
earlier, which can be used to prune low-support patterns. We propose a new strategy
that first considers patterns of small size and increases gradually the size of sequential
patterns to be mined until k patterns are generated. The reasoning behind this strat-
egy is that patterns of small size are likely to be more frequent in SDB. Function
top-k-init-IPL6 depicts the pseudo-code of our strategy. top-k-PP-IPL strat-
egy can be considered as a level-wise approach which generates in each step patterns
by incrementing the previous pattern’s length. At the beginning, we search for all fre-
quent patterns of size equal to �min (lines 6-10), and we stop the extraction when there
is no more patterns with a support higher than or equal to minsup. If the number of
patterns extracted of size �min is less than k, then we restart search by increasing �min

by one. The process is repeated until k frequent patterns are found (line 5). Contrary to
the base-line strategy, once k patterns are found, we restart the search before continuing
with the procedure top-k-SupportRaising. We pointed out that the �min parame-
ter allows to fix the minimum length of the generated patterns. Although this parameter
is considered in the definition of top-k patterns, and therefore as an input parameter of
our approach top-k-PP-IPL, it has no impact on the provided solutions, but on the
efficiency of solving. This is guaranteed by setting �min to 1 and adding the minimum
size constraint minSize(P, �min) (see Section 4.1 (c)).

c) A running example. Table 3 illustrates the execution of top-k-init-IPL on the
SDB of Table 1 with k = 5 and �min = 1. In the first iteration (i.e., �min = 1), four
patterns are generated. As |M| < 5, we look for patterns of size 2. A first pattern 〈BB〉

5We note by top-k-PP-BL the top-k algorithm using as first step the top-k-init-BL strategy.
6We note by top-k-PP-IPL the top-k algorithm using as first step the top-k-init-IPL strategy.

Constraints

Ta
bl
e
3

R
un

ni
ng

t
o
p
-
k
-
i
n
i
t
-
I
P
L

on
Ta

bl
e

1
(k

=
5

an
d

�
m

in
=

1)
.T

he
nu

m
be

rs
in

co
lu

m
ns

2
an

d
3

re
pr

es
en

tt
he

su
pp

or
to

f
ea

ch
fr

eq
ue

nt
se

qu
en

ce

St
ep

s
of

th
e

al
go

ri
th

m
C

an
di

da
te

s
M

:l
is

to
f

to
p-

k
pa

tte
rn

s
or

de
re

d
ac

co
rd

in
g

to
th

ei
r

su
pp

or
t

M
in

su
p

In
iti

al
iz

at
io

n
(�

m
in

=
1)

〈B
〉:

4,
〈C

〉:
3,

〈A
〉:

3,
〈D

〉:
1

〈B
〉:

4,
〈C

〉:
3,

〈A
〉:

3,
〈D

〉:
1

0

〈B
B

〉:
2

〈B
〉:

4,
〈C

〉:
3,

〈A
〉:

3,
〈B

B
〉:

2,
〈D

〉:
1

0

In
iti

al
iz

at
io

n
(�

m
in

=
2)

〈B
C

〉:
3

〈B
〉:

4,
〈C

〉:
3,

〈A
〉:

3,
〈B

C
〉:

3,
〈B

B
〉:

2
2

〈A
B

〉:
3

〈B
〉:

4,
〈C

〉:
3,

〈A
〉:

3,
〈B

C
〉:

3,
〈A

B
〉:

3
3

Su
pp

or
tr

ai
si

ng
(�

m
in

)
≥

3
∅

〈B
〉:4

,〈C
〉:

3,
〈A

〉:3
,〈B

C
〉:3

,〈A
B

〉:3
3

Constraints

with a support 2 is found, and then inserted in M. A second pattern 〈BC〉 with a support
3 is generated, and again inserted in M. As there are more than (k = 5) patterns in
M, pattern 〈D〉 is removed from M , and minsup is raised to the support of 〈BB〉 (i.e.,
2). Now, a third pattern of size 2 is generated (i.e., pattern 〈AB〉 with a support 3). It
is inserted in M, pattern 〈BB〉 is removed from M (i.e. it is not a top-5 pattern), and
minsup is raised to 3. As there is no more pattern of size 2 with a support higher than
or equal to minsup, the initialization step of Algorithm 4 terminates. In this example,
the mining is completed after the first step because the support threshold is raised to
3 and there are no patterns with support greater than or equal to 3. For comparison,
Table 4 shows the results obtained by top-k-PP-BL on the SDB of Table 1. As we
can see, after the initialization step, M = {〈B〉, 〈BC〉, 〈BB〉, 〈BBC〉, 〈BCB〉}, and
minsup = 1. For the second step, as minsup is set to a low value, top-k-PP-BL
needs to explore many patterns with pretty low support to get the top-5 sequential
patterns, thus demonstrating the interest of top-k-init-IPL strategy as compared
to the base-line strategy.

6 Experimental evaluation

6.1 Benchmark datasets

We chose several real database benchmarks of large size, publicly available from [7]. These
datasets have varied characteristics and represent different application domains: web click
stream, texts from books, protein sequences and bio-medical text. Table 5 reports for each
dataset, the number of sequences #SDB, the number of items #I , the average size of
sequence avg(#s) and the maximum sequence length. The Leviathan dataset is a conversion

Table 4 Running top-k-PP-BL on Table 1 (k = 5 and �min = 1)

Steps of the algorithm Candidates M: list of top-k patterns ordered according to their support Minsup

Initialization step 〈B〉 : 4 〈B〉: 4 0

〈BB〉 : 2 〈B〉 : 4, 〈BB〉: 2 0

〈BBC〉 : 2 〈B〉 : 4, 〈BB〉 : 2, 〈BBC〉: 2 0

〈BC〉 : 3 〈B〉 : 4, 〈BC〉: 3, 〈BB〉 : 2, 〈BBC〉 : 2 0

〈BCB〉 : 1 〈B〉 : 4, 〈BC〉 : 3, 〈BB〉 : 2, 〈BBC〉 : 2, 〈BCB〉: 1 1

Support raising step 〈BCBC〉 : 1

〈BCC〉 : 1

〈BCD〉 : 1 〈B〉 : 4, 〈BC〉 : 3, 〈BB〉 : 2, 〈BBC〉 : 2, 〈BCB〉 : 1,

〈BA〉 : 1 〈BCBC〉 : 1, 〈BCC〉 : 1, 〈BCD〉 : 1, 〈BA〉 : 1, 1

〈BAB〉 : 1 〈BAB〉 : 1, 〈BABC〉 : 1, 〈BAC〉 : 1, 〈BD〉 : 1

〈BABC〉 : 1

〈BAC〉 : 1

〈BD〉 : 1

〈C〉 : 3 〈B〉 : 4, 〈BC〉 : 3, 〈C〉: 3, 〈BB〉 : 2, 〈BBC〉 : 2 2

〈A〉 : 3 〈B〉 : 4, 〈BC〉 : 3, 〈C〉 : 3, 〈A〉: 3, 〈BB〉 : 2, 〈BBC〉 : 2 2

〈AB〉 : 3 〈B〉 : 4, 〈BC〉 : 3, 〈C〉 : 3, 〈A〉 : 3, 〈AB〉: 3 3

Constraints

Table 5 Dataset Characteristics

Dataset #SDB #I avg (#s) maxs∈SDB (#s) Type of data

Leviathen 5834 9025 33.81 100 book

Kosarak 69999 21144 7.97 796 web click stream

FIFA 20450 2990 34.74 100 web click stream

BIBLE 36369 13905 21.64 100 bible

Protein 103120 24 482 600 protein sequences

data-200K 200000 20 50 86 synthetic dataset

PubMed 17527 19931 29 198 bio-medical text

of the novel Leviathan by Thomas Hobbes (1651) as a sequence database (each word is an
item). It contains 5834 sequences and 9025 distinct items. The average number of items per
sequence is 33.8. The Kosarak dataset is a very large dataset containing 990,000 sequences
of click-stream data obtained from an hungarian news portal. The dataset in its original for-
mat can be found at http://fimi.ua.ac.be/data/. For our experiments, we selected a subset
of 69,999 sequences. The FIFA dataset contains sequences of click stream from the web-
site of FIFA World Cup 98. It has 2990 distinct items (webpages). The average sequence
length is 34.74 items. This dataset was created by processing a part of the web logs from
the world cup. The BIBLE dataset is a conversion of the Bible into a sequence database
(each word is an item). It contains 36369 sequences and 13905 distinct items. The average
length of a sequence is 21.6 items. The Protein dataset contains DNA sequence records.
It has 103120 sequences over an alphabet of 24 symbols, and average sequence length
equals to 482. The data-200K is a synthetic dataset generated using the IBM dataset gen-
erator. These two datasets can be downloaded from http://www-kdd.isti.cnr.it/SMA/. The
PubMed dataset is obtained from biomedical texts [3]. We create a corpus using HUGO7

and Orphanet dictionaries to query the database to get sentences describing genes and rare
diseases.

6.2 Experimental protocol

The implementation of our approach was coded in C++ using the Gecode solver.8 All
experiments were conducted on a machine with a processor Intel X5670 and 24 GB of
memory, running the Linux operating system. A time limit of 1 hour has been used. For
each dataset, we varied the minsup threshold until the method is not able to complete
the extraction of all patterns within the time limit. For example, in the case of the Protein
dataset, we chose high values of minsup (minsup ≥ 99.978 %). Otherwise, a timeout is
obtained due to the size of the dataset which exceeds 100,000 sequences. � was set to the
length of the longest sequence of SDB. The implementation and the datasets used in our
experiments are available online.9

Our objective is (1) to compare our approach to existing CP methods as well as to
state-of-the-art methods for SPM in terms of scalability which is a major issue of existing

7www.genenames.org
8http://www.gecode.org
9https://sites.google.com/site/prefixprojection4cp/

http://fimi.ua.ac.be/data/
http://www-kdd.isti.cnr.it/SMA/
www.genenames.org
http://www.gecode.org
https://sites.google.com/site/prefixprojection4cp/

Constraints

CP methods, (2) to show the flexibility of our approach allowing to handle different
constraints simultaneously, (3) to evaluate the performance of both top-k-PP-BL and
top-k-PP-IPL against state-of-the-art methods for top-k SPM in terms of efficiency and
scalability. We compare our approach (indicated by PP) with:

1. two CP encodings [18], the most efficient CP methods for SPM: global-p.f and
decomposed-p.f;

2. state-of-the-art methods for SPM: PrefixSpan and cSpade;
3. SMA [30] for SPM under regular expressions.
4. state-of-the-art methods for top-k SPM: TSP [31] and TKS [8].

We used the author’s cSpade10 and PrefixSpan11 implementations for SPM. and
the SMA implementation12 for SPM under regular expressions. The two algorithms TKS and
TSP used in our experiments are part of the SPMF13 data mining framework [7]. The imple-
mentation14 of the two CP encodings was carried out in the Gecode solver. All methods
have been executed on the same machine.

6.3 Comparing PP with existing CP methods for SPM

First we compare PP with the two CP encodings global-p.f and decomposed-p.f
(see Section 3.2). CPU times (in logscale for BIBLE, Kosarak and PubMed) of the three
methods are shown on Fig. 3. We also report the number of extracted patterns in Fig. 4.
First, as expected, the lower minsup is, the larger the number of extracted patterns. Second,
decomposed-p.f is the least performer method. On all the datasets, it fails to complete
the extraction within the time limit for all values of minsup we considered. Third, PP
largely dominates global-p.f on all the datasets: PP is more than an order of magnitude
faster than global-p.f. The gains in terms of CPU times are greatly amplified for low
values of minsup. On BIBLE (resp. PubMed), the speed-up is 84.4 (resp. 33.5) for minsup

equal to 1 %. Another important observation that can be made is that, on most of the datasets
(except BIBLE and Kosarak), global-p.f is not able to mine for patterns at very low
frequency within the time limit. For example on FIFA, PP is able to complete the extraction
for values of minsup up to 6 % in 1,457 seconds, while global-p.f fails to complete the
extraction for minsup less than 10 %. Another observation is that Prefix-Projection extracts
the sequantial patterns in a backtrack-free manner, where all solutions can be enumerated
without any fail. This result is confirmed by the number of failures always equal to zero
(backtrack-free).

To complement the results given by Fig. 3, Table 6 reports for different datasets and dif-
ferent values of minsup, the number of calls to the propagate routine of Gecode (column
5), and the number of nodes of the search tree (column 6). First, PP explores less nodes
than global-p.f. But, the difference is not huge (gains of 45 % and 33 % on FIFA
and BIBLE respectively). Second, our approach is very effective in terms of number of

10http://www.cs.rpi.edu/zaki/www-new/pmwiki.php/Software/
11http://illimine.cs.uiuc.edu/software/prefixspan-mining-sequential-patterns-efficiently-
prefix-projected-pattern-growth/
12http://www-kdd.isti.cnr.it/SMA/
13http://www.philippe-fournier-viger.com/spmf/
14https://dtai.cs.kuleuven.be/CP4IM/cpsm/

http://www.cs.rpi.edu/ zaki/www-new/pmwiki.php/Software/
http://illimine.cs.uiuc.edu/software/prefixspan-mining-sequential-patterns-efficiently-
prefix-projected-pattern-growth/
http://www-kdd.isti.cnr.it/SMA/
http://www.philippe-fournier-viger.com/spmf/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/

Constraints

Fig. 3 Comparing PP with global-p.f for SPM on real-life datasets: CPU times

propagations. For PP, the number of propagations remains small (in thousands for small
values of minsup) compared to global-p.f (in millions). This is due to the huge num-
ber of reified constraints used in global-p.f to encode the subsequence relation. On the
contrary, our Prefix-Projection global constraint does not require any reified constraints nor
any extra variables to encode the subsequence relation. Finally, we observe that the number
of nodes is slightly different from the number of propagations, because Gecode calls the
filtering algorithm each time a new variable is assigned even with the empty symbol. There
are some nodes where the filtering algorithm is called many times, because there are more
than one variable for which the domain is reduced to a singleton.

Fig. 4 Comparing PP with global-p.f for SPM on real-life datasets: number of patterns

Constraints

Table 6 PP vs. global-p.f

Dataset minsup(%) #PATTERNS CPU times (s) #PROPAGATIONS #NODES

PP global-p.f PP global-p.f PP global-p.f

BIBLE 10 174 1.98 105.01 363 4189140 235 348

8 274 2.47 153.61 575 5637671 362 548

6 508 3.45 270.49 1065 8592858 669 1016

4 1185 5.7 552.62 2482 15379396 1575 2371

2 5311 15.05 1470.45 11104 39797508 7048 10605

1 23340 41.4 3494.27 49057 98676120 31283 46557

Kosarak 1 384 2.59 137.95 793 8741452 482 769

0.5 1638 7.42 491.11 3350 26604840 2087 3271

0.3 4943 19.25 1111.16 10103 56854431 6407 9836

0.28 6015 22.83 1266.39 12308 64003092 7831 11954

0.24 9534 36.54 1635.38 19552 81485031 12667 18966

0.2 15010 57.6 2428.23 30893 111655799 20055 29713

PubMed 5 2312 8.26 253.16 4736 15521327 2833 4619

4 3625 11.17 340.24 7413 20643992 4428 7242

3 6336 16.51 536.96 12988 29940327 7757 12643

2 13998 28.91 955.54 28680 50353208 17145 27910

1 53818 77.01 2581.51 110133 124197857 65587 107051

FIFA 20 938 8.16 129.54 1884 11649290 1025 1873

18 1743 13.39 222.68 3502 19736442 1922 3486

16 3578 24.39 396.11 7181 35942314 3923 7151

14 7313 44.08 704 14691 65522076 8042 14616

12 16323 86.46 1271.84 32820 126187396 18108 32604

10 40642 185.88 2761.47 81767 266635050 45452 81181

Leviathan 10 651 1.78 12.56 1366 2142870 849 1301

8 1133 2.57 19.44 2379 3169615 1487 2261

6 2300 4.27 32.85 4824 5212113 3008 4575

4 6286 9.08 66.31 13197 10569654 8227 12500

2 33387 32.27 190.45 70016 33832141 43588 66116

1 167189 121.89 − 350310 − 217904 −
Protein 99.99 127 165.31 219.69 264 26731250 172 221

99.988 216 262.12 411.83 451 44575117 293 390

99.986 384 467.96 909.47 805 80859312 514 679

99.984 631 753.3 1443.92 1322 132238827 845 1119

99.982 964 1078.73 2615 2014 201616651 1284 1749

99.98 2143 2315.65 − 4485 − 2890 −

6.4 Comparing PP with ad hoc methods for SPM

Our second experiment compares PP with state-of-the-art methods for SPM. Figure 5a
shows the CPU times of the three methods. First, cSpade obtains the best performance
on all datasets (except on Protein). However, PP exhibits a similar behavior as cSpade,

Constraints

Fig. 5 Comparing Prefix-Projection with state-of-the-art algorithms for SPM

but it is less faster (not counting the highest values of minsup). The behavior of cSpade
on Protein is due to the vertical representation format that is not appropriated in the case
of databases having large sequences and small number of distinct items, thus degrading the
performance of the mining process.

Second, PP which also uses the concept of projected databases, clearly outperforms
PrefixSpan on all datasets (except on Protein). This is due to the incremental data struc-
tures adopted in PP enabling a quick computation of the projected databases. We point
out also another fact: when instantiating some item position in the pattern, PP reduces
all the next positions, whereas PrefixSpan reduces only the next position. On FIFA, both
approaches remain feasible until 6 % within the time limit. However, Prefix-Projection is 3
times faster than PrefixSpan for minsup equal to 6 %. These results clearly demonstrate
that our approach competes well with state-of-the-art methods for SPM on large datasets
and achieves scalability while it is a major issue of existing CP approaches.

6.5 SPM under size and item constraints

Our third experiment aims at assessing the interest of pushing simultaneously different types
of constraints. We impose on the PubMed dataset usual constraints such as the minimum
frequency and the minimum size constraints and other useful constraints expressing some
linguistic knowledge such as the item constraint. The goal is to retain sequential patterns
which convey linguistic regularities (e.g., gene - rare disease relationships) [3].

– The size constraint allows to remove patterns that are too small w.r.t. the number of
items (number of words) to be relevant patterns. We tested this constraint with �min set
to 3.

– The item constraint imposes that the extracted patterns must contain the item GENE
and the item DISEASE.

Constraints

As no ad hoc method exists for this combination of constraints we only compare PP
with global-p.f. Figure 6 shows the CPU times and the number of sequential patterns
extracted with and without constraints. First, pushing simultaneously the two constraints
enables to reduce significantly the number of patterns. Moreover, the CPU times for
PP decrease slightly whereas for global-p.f (with and without constraints), they are
almost the same. This is probably due to the significant number of propagations performed
between the m exists-embedding reified global constraints and the two constraints,
in order to reach the domain fixpoint (i.e., the variables domain where no value can be fil-
tered). Conversely, in our model, there are only three constraints to propagate for which
the fixpoint can be reached more quickly. Second (see Table 7), when considering the
two constraints, PP clearly dominates global-p.f (speed-up value up to 51.5). More-
over, the number of propagations performed by PP remains very small as compared to
global-p.f.

Figure 6c compares the two methods under the minimum size constraint for different
values of �min, with minsup fixed to 1 %. Once again, PP is always the most performer
method (speed-up value up to 53.1). These results also confirm what we observed previ-
ously, namely the weak communication between reified global constraints and constraints
imposed on patterns (i.e., size and item constraints).

6.6 SPM under regular constraints

Our forth experiment compares PP-REG against two variants of SMA: SMA-1P (SMA one
pass) and SMA-FC (SMA Full Check). Two datasets are considered from [30]: one synthetic
dataset (data-200k), and one real-life dataset (Protein).

– For data-200k, we used two RE:

1. RE10 ≡ A∗B(B|C)D∗EF ∗(G|H)I ∗
2. RE14 ≡ A∗(Q|BS∗(B|C))D∗E(I |S)∗(F |H)G∗R

– For Protein, we used RE2 ≡ (S|T) . (R|K) representing Protein kinase C phosphory-
lation (where . represents any symbol).

Figure 7 reports CPU-times comparison. On the synthetic dataset, our approach is very
effective. For RE14, our method is more than an order of magnitude faster than SMA. On
Protein, the gap between the 3 methods shrinks, but our method remains effective. For the
particular case of RE2, the Regular constraint can be substituted by restricting the domain
of the first and third variables to {S, T } and {R,K} respectively (denoted as PP-SRE), thus
improving performances.

(a) (b) (c)

Fig. 6 Comparing PP with global-p.f under minimum size and item constraints on PubMed

Constraints

Table 7 PP vs. global-p.f under minimum size and item constraints

Dataset minsup (%) #PATTERNS CPU times (s) #PROPAGATIONS #NODES

PP global-p.f PP global-p.f PP global-p.f

PubMed 5 279 6.76 252.36 7878 12234292 2285 4619

4 445 8.81 339.09 12091 16475953 3618 7242

3 799 12.35 535.32 20268 24380096 6271 12643

2 1837 20.41 953.32 43088 42055022 13888 27910

1 7187 49.98 2574.42 157899 107978568 52508 107051

6.7 Scalability of prefix-projection approach

To evaluate the scalability of Prefix-Projection global constraint, we used the six real-life
datasets and replicated it from 1 to 20 times. We fixed the minimum support threshold at
three different values for each dataset. Figure 8 illustrates how the CPU times of Prefix-
Projection varies with different replication factors (i.e. dataset sizes). We can see that the
CPU times increase (almost) linearly when the replication factor (i.e. number of sequences)
increases. This indicates that Prefix-Projection scales well with the size of dataset. For
example, for dataset FIFA with minsup at 10 %, the CPU time increases from 185 seconds
to about 2500 seconds when the number of sequences increases 16 times. Moreover, we can
also observe that the CPU times decrease significantly as the minimum support increases.
This phenomena can be partially explained by the fact that the number of mined patterns
increases dramatically with the decreasing of minimum support. For example, for dataset
FIFA with minsup at 10 %, there are totally 40,642 sequential patterns, while there are only
5,110 sequential patterns with minsup at 15 %.

6.8 Top-k mining evaluation

In this section, we report a performance study of top-k SPM algorithms over the datasets
in Table 5. First, we compare the efficiency of the two top-k-PP algorithms with two
state-of-the-art algorithms for top-k SPM, TSP and TKS, for different values of k. Sec-
ond, we study the interest of pushing simultaneously different types of constraints like
item and size constraints into top-k sequential pattern mining. Third, we evaluate the per-
formance of top-k-PP-IPL in terms of scalability. Last, we compare the performance
of top-k-PP-IPL with PP and cSpade for the scenario where the user would tune

Fig. 7 Comparing Prefix-Projection with SMA for SPM under RE constraint

Constraints

Fig. 8 Scalability of Prefix-Projection global constraint on real-life datasets

PP or cSpade with the final minimum support threshold to generate the top-k sequential
patterns.

6.8.1 Influence of parameter k

In order to determine the effect of the parameter k on the CPU times of our two top-k-PP
algorithmsv (top-k-PP-IPL and top-k-PP-BL), we varied k from 100 to 3000 (except
for PubMed where k varies from 100 to 10000). We compare the performance of our two
algorithms with TSP and TKS. Figure 9 and Table 8 show detailed results. We can clearly
observe that the greater k is, the longer the CPU time is. It is worth noting that all of the
four methods generate the same top-k sequential patterns and obtain the same support of the

Fig. 9 Comparing top-k-PP-IPL and top-k-PP-BL with TSP and TKS for top-k sequential patterns
on real-life datasets

Constraints

Table 8 Comparing top-k approaches in terms of CPU times

Dataset k CPU times (s) Final minsup

top-k-PP-BL top-k-PP-IPL TKS TSP

BIBLE 1000 − 19.22 27.67 97.707 1593

2000 − 30.75 70.786 198.212 1146

3000 − 40.49 125.578 302.580 950

Kosarak 1000 − 17.44 15.781 12.351 442

2000 − 39.57 33.958 21.490 317

3000 − 69.29 57.806 27.501 261

PubMed 100 − 3.46 5.659 28.317 3745

6000 − 63.35 189.649 − 585

10000 − 126.29 388.865 − 410

least frequent pattern in top-k list M. From these curves, we can also draw the following
observations:

– First, as expected, top-k-PP-IPL clearly outperforms the base-line approach
top-k-PP-BL on all the datasets. On all datasets (except Kosarak and Protein),
top-k-PP-BL fails to complete the extraction process within the time limit. Table 9
compares the two methods in terms of reached threshold after the initialization step as
well as in terms of numbers of generated candidates on Kosarak dataset for different
values of k. We can see that the number of candidates generated by top-k-PP-BL
is much higher than the one by top-k-PP-IPL. Moreover, top-k-PP-IPL
reaches higher threshold values after the initialization step. These numbers show that
top-k-PP-IPL significantly outperforms top-k-PP-BL. The Table also shows that
the threshold value decreases when k increases. It is because the larger the k value is,
the lower the threshold value needs to be to return more patterns.

– Second, top-k-PP-IPL largely dominates TSP on all the datasets (except Kosarak
where TSP is the best one). Moreover, top-k-PP-IPL has better scalability than
TSP w.r.t. k. On the PubMed dataset, TSP failed to extract all top-k sequential patterns
for (k > 2000) within the time limit. For k = 1000, top-k-PP-IPL is an order of
magnitude faster than TSP. On the Protein dataset, TSP is not able to complete the
extraction even for small values of k.

– Third, top-k-PP-IPL clearly outperforms TKS on two datasets (speed-up value up
to 3.38), while TKS is better on FIFA. On Kosarak and Leviathan, the two methods
behave very similarly with a slight advantage for TKS. Recall that TKS is known as
the most effective algorithm for mining top-k sequential patterns. However, it uses
quite a lot of memory because it needs to consider several ”search paths” at the same
time in memory to find the top-k patterns. This phenomena is amplified when the
length of sequences and the number of items are too large, as for the two datasets
BIBLE and PubMed. This partially explains the poor performance of TKS on these
datasets.

These results clearly highlight the interest of combining our increasing pattern length
strategy with our global constraint for this task which is much harder than sequential pattern
mining since minsup has to be raised dynamically.

Constraints

Ta
bl
e
9

C
om

pa
ri

ng
t
o
p
-
k
-
P
P
-
I
P
L

w
ith

t
o
p
-
k
-
P
P
-
B
L

in
te

rm
s

of
(a

)
re

ac
he

d
th

re
sh

ol
d

af
te

r
th

e
in

iti
al

iz
at

io
n

st
ep

an
d

(b
)

nu
m

be
r

of
ca

nd
id

at
es

ge
ne

ra
te

d
fo

r
di

ff
er

en
t

va
lu

es
of

k
on

K
os

ar
ak

da
ta

se
t

k
m

in
s
u
p

af
te

r
in

iti
al

iz
at

io
n

st
ep

#
C

A
N

D
ID

A
T

E
S

C
PU

tim
es

(s
)

Fi
na

lm
in

s
u
p

t
o
p
-
k
-
P
P
-
B
L

t
o
p
-
k
-
P
P
-
I
P
L

t
o
p
-
k
-
P
P
-
B
L

t
o
p
-
k
-
P
P
-
I
P
L

t
o
p
-
k
-
P
P
-
B
L

t
o
p
-
k
-
P
P
-
I
P
L

10
1

45
69

10
4

17
41

8.
13

1.
28

0
64

63

50
1

74
5

28
36

13
0

42
3.

01
2.

08
24

07

10
0

1
46

0
43

10
5

26
5

49
1.

29
2.

83
16

29

Constraints

(a) (b)

Fig. 10 Results of top-k-PP-IPL under constraints (CPU times)

6.8.2 Influence of item and size constraints on top-k approach

To asses the interest of pushing simultaneously different types of constraints in
top-k-PP-IPL algorithm, we imposed on PubMed dataset both item and minimum size
constraints as those used in Section 6.5. To our best knowledge, there is no existing algo-
rithm that mines top-k sequential patterns for this combination of constraints, we thus
evaluate how sensitive top-k-PP-IPL is to these two constraints when varying the value
of k. Figure 12 shows the CPU times of top-k-PP-IPL algorithm when the two con-
straints are pushed simultaneously or individually on the PubMed dataset for �min fixed
at 3 and k ranging from 100 to 10000. First, top-k-PP-IPL’s performance decreases
marginally when the two constraints are pushed simultaneously or individually for high val-
ues of k. Second, when considering separately each constraint, the size constraint seems to
have less impact on the CPU times as compared to the item constraint. This suggests that
item constraint is more difficult to satisfy. Such results are consistent since the mining task
is much harder because we look for the k best sequential patterns satisfying each constraint
or their combination, even if the number of patterns decreases. We can also notice that, the
CPU time increases linearly as k increases.

We also evaluated how top-k-PP-IPL algorithm behaves when the maximum size of
pattern � vary. Figure 10b shows the results obtained on dataset Kosarak. In the experiments,
we fixed k at 3000 and varied �15 from 50 to 796. We can clearly observe that the greater �

is, the longer the CPU time is, because the number of candidate patterns is also increasing.
Moreover, the CPU time increases linearly with the linearly increasing of the maximum size
of a pattern. For example, at � = 50, the CPU time was reduced by half. Thus, �, which also
represents the number of variables in our CP model, has an important effect on the CPU
time.

6.8.3 Scalability of top-k approach

To evaluate the scalability of top-k-PP-IPL algorithm, we followed the same experi-
mental protocol as in Section 6.7. Figure 11 shows the CPU times obtained for two values
of k: 1000 and 2000 (for Protein, k was set to 50 and 100 in order to complete the extraction
within the time limit of one hour). Once again, top-k-PP-IPL scales well with the size
of dataset.

15Recall that in all experiments, � was fixed to the maximum size of sequences in the database.

Constraints

Fig. 11 Scalability of top-k-PP-IPL on real-life datasets

6.8.4 Performance comparison of top-k-PP-IPL with PP and cSpade

Our last experiment compares the efficiency of top-k-PP-IPL against PP and cSpade
in the case where the two last algorithms are tuned with the optimal minimum support
threshold (which is difficult to obtain in practice) so that they can generate the same top-k
sequential patterns for a user-specified k value (under a condition of �min). These optimal
minsup are obtained by running top-k-PP-IPL for each k value. Figure 12 shows the
CPU times of the three algorithms. For all datasets, except PubMed, PP and cSpade largely
dominate top-k-init-IPL. For the PubMed dataset, the curves show that when k is
above 4000, top-k-PP-IPL starts to outperform PP, while cSpade retains its good per-
formance. These results clearly demonstrate that top-k sequential pattern mining is a much
harder problem than sequential pattern mining since minsup has to be raised dynamically,
starting from 0.

Fig. 12 Comparing top-k-PP-IPL with PP and cSpade

Constraints

7 Conclusion

We have proposed the global constraint Prefix-Projection for sequential pattern mining.
Prefix-Projection encapsulates both the subsequence relation imposed over the sequences
of the database as well as the frequency constraint into a single constraint. Its filtering
strongly relies on the principle of projected databases adopted by pattern growth approaches.
Unlike existing CP approaches, to the best of our knowledge, it is the first global constraint
which does not require any reified constraints to extract frequent patterns. Prefix-Projection
filtering algorithm enforces domain consistency on the variable succeeding the current
frequent prefix in polynomial time. When this global constraint is integrated into a CP
solver, it enables to handle several constraints simultaneously. Some of them like size, item
membership and regular expression are considered in this paper.

In this paper, we have also investigated the task of mining top-k sequential patterns opti-
mizing the frequency measure. We showed how our Prefix-Projection global constraint can
be exploited to achieve this task efficiently. More precisely, we have proposed an effective
strategy for initializing the top-k patterns with the most promising ones so that high support
patterns can be derived earlier. Moreover, we studied the effect of adding constraints for
mining top-k sequential patterns as minimum size, item and regular expression constraints,
and showed how they can be combined with our Prefix-Projection global constraint.

Experiments performed on several real-life datasets show that our approach clearly out-
performs existing CP approaches and competes well with the state-of-the-art methods on
large datasets for mining frequent sequential patterns, sequential patterns under various
constraints, and top-k sequential patterns. It is worth noticing that our approach achieves
scalability while it is a major issue of existing CP approaches.

Although Prefix-Projection is well suited for constraints on patterns, it would require to
be adapted to handle other constraints like aggregates, or constraints on subsequence rela-
tion like duration or gap constraints [13]. Another direction that deserves to be considered
is to extend our approach for sequences of itemsets. Another promising line of research
we intend to investigate is to tackle constraints defined on set of patterns [25]. In this set-
ting, the interest of a pattern is evaluated w.r.t. a set of patterns. Examples include finding
closed patterns, relevant subgroups [19], and skypatterns [28]. Given a set of measures, sky-
patterns are patterns based on a Pareto-dominance relation for which no measure can be
improved without degrading the others. Such patterns are highly interesting because they
do not require any threshold on the measures and the dominance relation gives to the sky-
patterns a global interest with semantics easily understood by the user. A relevant subgroup
consists of patterns that discriminate the positive dataset from the negative one. These pat-
terns are interesting in many domains like disease likelihood prediction, discovering patterns
in gene expression data, comparison of protein, and so on. These types of constrains involv-
ing set of patterns can be efficiently handled by CP techniques [17, 26] exploiting our global
constraint.

References

1. Agrawal, R., & Srikant, R. (1995). Mining sequential patterns, In Yu, P.S., & Chen, A.L.P. (Eds.) Pro-
ceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995, Taipei,
Taiwan. pp. 3–14. IEEE Computer Society. doi:10.1109/ICDE.1995.380415.

2. Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a bitmap rep-
resentation. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge

http://dx.doi.org/10.1109/ICDE.1995.380415

Constraints

Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada. pp. 429–435. ACM.
doi:10.1145/775047.775109.

3. Béchet, N., Cellier, P., Charnois, T., & Crémilleux, B. (2012). Sequential pattern mining to discover
relations between genes and rare diseases. In CBMS.

4. Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Journal of Mathemati-
cal and Computer Modelling, 20(12), 97–123.

5. Cheung, Y., & Fu, A.W. (2004). Mining frequent itemsets without support threshold: With and
without item constraints. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1052–
1069.

6. Coquery, E., Jabbour, S., Saı̈s, L., & Salhi, Y. (2012). A sat-based approach for discovering frequent,
closed and maximal patterns in a sequence, In Raedt, L.D., Bessière, C., Dubois, D., Doherty, P.,
Frasconi, P., Heintz, F., & Lucas, P.J.F. (Eds.) ECAI 2012 - 20th European Conference on Artificial Intel-
ligence. Including Prestigious Applications of Artificial Intelligence (PAIS-2012) System Demonstrations
Track, Montpellier, France, August 27-31, 2012. Frontiers in Artificial Intelligence and Applications,
vol. 242, pp. 258–263. IOS Press. doi:10.3233/978-1-61499-098-7-258.

7. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., & Tseng, V. (2014). SPMF: A java
Open-Source pattern mining library. J. of Machine Learning Resea., 15, 3389–3393.

8. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., & Thomas, R. (2013). TKS: effi-
cient mining of top-k sequential patterns, In Motoda, H., Wu, Z., Cao, L., Zaı̈ane, O.R., Yao, M., &
Wang, W. (Eds.) Advanced Data Mining and Applications, 9th International Conference, ADMA 2013,
Hangzhou, China, December 14-16, 2013, Proceedings, Part I. Lecture Notes in Computer Science, vol.
8346, pp. 109–120. Springer. doi:10.1007/978-3-642-53914-5 10.

9. Garofalakis, M.N., Rastogi, R., & Shim, K. (2002). Mining sequential patterns with regular expression
constraints. IEEE Trans. Knowl. Data Eng., 14(3), 530–552. doi:10.1109/TKDE.2002.1000341.

10. Guns, T., Nijssen, S., & Raedt, L.D. (2011). Itemset mining: A constraint programming perspective.
Artif. Intell., 175(12-13), 1951–1983. doi:10.1016/j.artint.2011.05.002.

11. Han, J., Wang, J., Lu, Y., & Tzvetkov, P. (2002). Mining top-k frequent closed patterns without minimum
support. In Proceedings of the 2002 IEEE international conference on data mining (ICDM 2002), 9-12
december 2002, maebashi city, Japan (pp. 211–218).

12. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., & Charnois, T. (2015). PREFIX-PROJECTION
global constraint for sequential pattern mining, In Pesant, G. (Ed.) Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - Septem-
ber 4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9255, pp. 226–243. Springer.
doi:10.1007/978-3-319-23219-5 17.

13. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., & Charnois, T. (2016). A global constraint
for mining sequential patterns with GAP constraint. In Integration of AI and OR techniques in
constraint programming - 13th international conference, CPAIOR 2016, banff, AB, Canada, May
29 - June 1, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9676, pP. 198–215.
Springer.

14. Kemmar, A., Ugarte, W., Loudni, S., Charnois, T., Lebbah, Y., Boizumault, P., & Crémilleux, B. (2014).
Mining relevant sequence patterns with cp-based framework. In 26th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014. pp. 552–559.
IEEE Computer Society. doi:10.1109/ICTAI.2014.89.

15. Li, C., Yang, Q., Wang, J., & Li, M. (2012). Efficient mining of gap-constrained subsequences and its
various applications. ACM Trans. Knowl. Discov. Data, 6(1), 2:1–2:39.

16. Métivier, J.P., Loudni, S., & Charnois, T. (2013). A constraint programming approach for mining sequen-
tial patterns in a sequence database. In ECML/PKDD Workshop on languages for data mining and
machine learning.

17. Négrevergne, B., Dries, A., Guns, T., & Nijssen, S. (2013). Dominance programming for itemset min-
ing, In Xiong, H., Karypis, G., Thuraisingham, B.M., Cook, D.J., & Wu, X. (Eds.) 2013 IEEE 13th
International Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013. pp. 557–566. IEEE
Computer Society. doi:10.1109/ICDM.2013.92.

18. Négrevergne, B., & Guns, T. (2015). Constraint-based seque nce mining using constraint programming,
In Michel, L. (Ed.) Integration of AI and OR Techniques in Constraint Programming - 12th Interna-
tional Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings. Lecture Notes in
Computer Science, vol. 9075, pp. 288–305. Springer. doi:10.1007/978-3-319-18008-3 20.

19. Novak, P.K., Lavrac, N., & Webb, G.I. (2009). Supervised descriptive rule discovery: a unifying survey
of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–
403.

http://dx.doi.org/10.1145/775047.775109
http://dx.doi.org/10.3233/978-1-61499-098-7-258
http://dx.doi.org/10.1007/978-3-642-53914-5_{1}0
http://dx.doi.org/10.1109/TKDE.2002.1000341
http://dx.doi.org/10.1016/j.artint.2011.05.002
http://dx.doi.org/10.1007/978-3-319-23219-5_{1}7
http://dx.doi.org/10.1109/ICTAI.2014.89
http://dx.doi.org/10.1109/ICDM.2013.92
http://dx.doi.org/10.1007/978-3-319-18008-3_{2}0

Constraints

20. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. (2001). Prefixspan: Mining
sequential patterns by prefix-projected growth, In Georgakopoulos, D., & Buchmann, A. (Eds.) Proceed-
ings of the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany.
pp. 215–224. IEEE Computer Society. doi:10.1109/ICDE.2001.914830.

21. Pei, J., Han, J., Mortazavi-Asl, B., & Zhu, H. (2000). Mining access patterns efficiently from web
logs, In Terano, T., Liu, H., & Chen, A.L.P. (Eds.) Knowledge Discovery and Data Mining, Cur-
rent Issues and New Applications, 4th Pacific-Asia Conference, PADKK 2000, Kyoto, Japan, April
18-20, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1805, pP. 396–407. Springer.
doi:10.1007/3-540-45571-X 47.

22. Pei, J., Han, J., & Wang, W. (2002). Mining sequential patterns with constraints in large databases.
In Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge
Management, McLean, VA, USA, November 4-9, 2002. pp. 18–25. ACM. doi:10.1145/584792.584799.

23. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables, In
Wallace, M. (Ed.) CP’04. LNCS, vol. 2239, pp. 482–495. Springer.

24. Pyun, G., & Yun, U. (2014). Mining top-k frequent patterns with combination reducing techniques.
Applied Intelligence, 41(1), 76–98.

25. Raedt, L.D., & Zimmermann, A. (2007). Constraint-based pattern set mining. In Proceedings of the
Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota,
USA. pp. 237–248. SIAM. doi:10.1137/1.9781611972771.22.

26. Rojas, W.U., Boizumault, P., Loudni, S., Crémilleux, B., & Lepailleur, A. (2014). Mining (soft-)
skypatterns using dynamic CSP, In Simonis, H. (Ed.) Integration of AI and OR Techniques
in Constraint Programming - 11th International Conference, CPAIOR 2014, Cork, Ireland, May
19-23, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8451, pp. 71–87. Springer.
doi:10.1007/978-3-319-07046-9 6.

27. Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of Constraint Programming. New York:
Elsevier Science Inc.

28. Soulet, A., Raı̈ssi, C., Plantevit, M., & Crémilleux, B. (2011). Mining dominant patterns in the sky,
In Cook, D.J., Pei, J., Wang, W., Zaı̈ane, O.R., & Wu, X. (Eds.) 11th IEEE International Conference
on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011. pp. 655–664. IEEE
Computer Society. doi:10.1109/ICDM.2011.100.

29. Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance
improvements, In Apers, P.M.G., Bouzeghoub, M., & Gardarin, G. (Eds.) Advances in Database Tech-
nology - EDBT’96, 5th International Conference on Extending Database Technology, Avignon, France,
March 25-29, 1996, Proceedings. Lecture Notes in Computer Science, (Vol. 1057 pp. 3–17): Springer.
doi:10.1007/BFb0014140.

30. Trasarti, R., Bonchi, F., & Goethals, B. (2008). Sequence mining automata: A new technique for mining
frequent sequences under regular expressions. In Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. pp. 1061–1066. IEEE Computer
Society. doi:10.1109/ICDM.2008.111.

31. Tzvetkov, P., Yan, X., & Han, J. (2003). In TSP: mining top-k closed sequential patterns. In: Proceed-
ings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 December 2003,
Melbourne, Florida, USA. pp. 347–354. IEEE Computer Society. doi:10.1109/ICDM.2003.1250939.

32. Wang, J., & Han, J. (2004). BIDE: efficient mining of frequent closed sequences, In Özsoyoglu,
Z.M., & Zdonik, S.B. (Eds.) Proceedings of the 20th International Conference on Data Engineer-
ing, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA. pp. 79–90. IEEE Computer Society.
doi:10.1109/ICDE.2004.1319986.

33. Wang, J., Han, J., Lu, Y., & Tzvetkov, P. (2005). TFP: an efficient algorithm for mining top-k frequent
closed itemsets. IEEE Trans. Knowl. Data Eng., 17(5), 652–664. doi:10.1109/TKDE.2005.81.

34. Yan, X., Han, J., & Afshar, R. (2003). Clospan: Mining closed sequential patterns in large databases, In
Barbará, D., & Kamath, C. (Eds.) Proceedings of the Third SIAM International Conference on Data Min-
ing, San Francisco, CA, USA, May 1-3, 2003. pp. 166–177. SIAM. doi:10.1137/1.9781611972733.15.

35. Yang, G. (2006). Computational aspects of mining maximal frequent patterns. Theoretical Computer
Science, 362(1-3), 63–85.

36. Zaki, M.J. (2000). Sequence mining in categorical domains: Incorporating constraints. In Proceedings of
the 2000 ACM CIKM International Conference on Information and Knowledge Management, McLean,
VA, USA, November 6-11, 2000. pp. 422–429. ACM. doi:10.1145/354756.354849.

37. Zaki, M.J. (2001). SPADE: an efficient algorithm for mining frequent sequences. Machine Learning,
42(1/2), 31–60. doi:10.1023/A:100765250231.

http://dx.doi.org/10.1109/ICDE.2001.914830
http://dx.doi.org/10.1007/3-540-45571-X_{4}7
http://dx.doi.org/10.1145/584792.584799
http://dx.doi.org/10.1137/1.9781611972771.22
http://dx.doi.org/10.1007/978-3-319-07046-9_{6}
http://dx.doi.org/10.1109/ICDM.2011.100
http://dx.doi.org/10.1007/BFb0014140
http://dx.doi.org/10.1109/ICDM.2008.111
http://dx.doi.org/10.1109/ICDM.2003.1250939
http://dx.doi.org/10.1109/ICDE.2004.1319986
http://dx.doi.org/10.1109/TKDE.2005.81
http://dx.doi.org/10.1137/1.9781611972733.15
http://dx.doi.org/10.1145/354756.354849
http://dx.doi.org/10.1023/A:100765250231

	Prefix-projection global constraint and top-k approach for sequential pattern mining
	Abstract
	Introduction
	Contributions and roadmap

	Preliminaries
	Sequential patterns
	SPM under constraints
	Projected databases*.5pt
	CSP and global constraints
	CSPs solving
	Global constraints

	Related works
	Ad hoc methods for SPM
	Existing CP methods for SPM
	Ad hoc methods for top-k SPM

	Prefix-projection global constraint
	CSP modeling for SPM
	Consistency checking and filtering*.5pt
	Building the projected databases
	Filtering algorithm
	Running examples
	Prefix-Projection filtering and search
	Comparing prefix-projection vs global-pf

	Mining the top-k sequential patterns
	The top-k-PP algorithm
	Support threshold raising step

	Strategies for initializing the top-k list M

	Experimental evaluation
	Benchmark datasets
	Experimental protocol
	Comparing PP with existing CP methods for SPM
	Comparing PP with ad hoc methods for SPM
	SPM under size and item constraints
	SPM under regular constraints
	Scalability of prefix-projection approach
	Top-k mining evaluation
	Influence of parameter k
	Influence of item and size constraints on top-k approach
	Scalability of top-k approach
	Performance comparison of top-k-PP-IPL with PP and cSpade

	Conclusion
	References

