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Abstract. Within the pattern mining area, skypatterns enable to express a user-

preference point of view according to a dominance relation. In this paper, we

deal with the introduction of softness in the skypattern mining problem. First, we

show how softness can provide convenient patterns that would be missed other-

wise. Then, thanks to Dynamic CSP, we propose a generic and efficient method

to mine skypatterns as well as soft ones. Finally, we show the relevance and the

effectiveness of our approach through a case study in chemoinformatics and ex-

periments on UCI benchmarks.

1 Introduction

Discovering useful patterns from data is an important field in data mining for data anal-

ysis and is used in a wide range of applications. Many approaches have promoted the

use of constraints to focus on the most promising knowledge according to a poten-

tial interest given by the final user. As the process usually produces a large number of

patterns, a large effort is made to a better understanding of the fragmented information

conveyed by the patterns and to produce pattern sets i.e. sets of patterns satisfying prop-

erties on the whole set of patterns [5]. Using the dominance relation is a recent trend in

constraint-based data mining to produce useful pattern sets [19].

Skyline queries [3] enable to express a user-preference point of view according to

a dominance relation. In a multidimensional space where a preference is defined for

each dimension, a point pi dominates another point p j if pi is better (i.e., more pre-

ferred) than p j in at least one dimension, and pi is not worse than p j on every other

dimension. However, while this notion of skylines has been extensively developed and

researched for database applications, it has remained unused until recently for data min-

ing purposes. Computing skylines of patterns from a database is clearly much harder

than computing skylines in database applications due to the huge difference between

the size of search spaces (we explain this issue in Section 5). The inherent complexity

on computing skylines of patterns may explain the very few attempts in this direction.

A pioneering work [17] proposed a technique to extract skyline graphs maximiz-

ing two measures. Recently, the notion of skyline queries has been integrated into

the constraint-based pattern discovery paradigm to mine skyline patterns (henceforth

called skypatterns) [19]. As an example, a user may prefer a pattern with a high fre-

quency, large length and a high confidence. In this case, we say that a pattern xi dom-

inates another pattern x j if f req(xi) ≥ f req(x j), size(xi) ≥ size(x j), con f idence(xi) ≥
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con f idence(x j) where at least one strict inequality holds. Given a set of patterns, the

skypattern set contains the patterns that are not dominated by any other pattern (we for-

mally introduce the notions in the following sections). Skypatterns are interesting for

a twofold reason: they do not require any threshold on the measures and the notion of

dominance provides a global interest with semantics easily understood by the user.

Nevertheless, skypatterns queries, like other kinds of queries, suffer from the strin-

gent aspect of the constraint-based framework. Indeed, a pattern satisfies or does not

satisfy the constraints. But, what about patterns that slightly miss a constraint? A pat-

tern, close to the frontier of the dominance area, could be interesting although it is not

a skypattern. In the paper, we formally introduce soft skypatterns. Note that there are

very few works such as [2,21] dealing with softness into the mining process.

The contributions of this paper are the following. First, we introduce the notion of

soft skypattern. Second, we propose a flexible and efficient approach to mine skypat-

terns as well as soft ones thanks to the Dynamic CSP (Constraint Satisfaction Problems)

framework [22]. Our proposition benefits from the recent progress on cross-fertilization

between data mining and Constraint Programming (CP) [4,9,7]. The common point of

all these methods is to model in a declarative way pattern mining as CSP, whose res-

olution provides the complete set of solutions satisfying all the constraints. We show

how the (soft-) skypatterns mining problem can be modeled and solved using dynamic

CSPs. A major advantage of the method is to improve the mining step during the process

thanks to constraints dynamically posted and stemming from the current set of candi-

date skypatterns. Moreover, the declarative side of the CP framework leads to a unified

framework handling softness in the skypattern problem. Finally, the relevance and the

effectiveness of our approach is highlighted through a case study in chemoinformatics

for discovering toxicophores and experiments on UCI benchmarks.

This paper is organized as follows. Section 2 presents the context and defines skypat-

terns. Section 3 introduces soft skypatterns. Section 4 presents our flexible and efficient

CP approach to mine skypatterns as well as soft ones. We review some related work

in Section 5. Finally, Section 6 reports in depth a case study in chemoinformatics and

describes experiments on UCI benchmarks.

2 The Skypattern Mining Problem

2.1 Context and Definitions

Let I be a set of distinct literals called items. An itemset (or pattern) is a non-null

subset of I . The language of itemsets corresponds to LI = 2I \ /0. A transactional

dataset T is a multiset of patterns of LI . Each pattern (or transaction) is a database

entry. Table 1 (left side) presents a transactional dataset T where each transaction ti is

described by items denoted A,. . . ,F . The traditional example is a supermarket database

in which each transaction corresponds to a customer and every item in the transaction

to a product bought by the customer. An attribute (price) is associated to each product

(see Table 1, right side).

Constraint-based pattern mining aims at extracting all patterns x of LI satisfying

a query q(x) (conjunction of constraints) which is usually called theory [12]: T h(q) =
{x ∈ LI | q(x) is true}. A common example is the frequency measure leading to the
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Table 1. Transactional dataset T

Trans. Items

t1 B E F

t2 B C D

t3 A E F

t4 A B C D E

t5 B C D E

t6 B C D E F

t7 A B C D E F

Item A B C D E F

Price 30 40 10 40 70 55

minimal frequency constraint ( f req(x) ≥ θ ). The latter provides patterns x having a

number of occurrences in the dataset exceeding a given minimal threshold θ . There are

other usual measures for a pattern x:

– size(x) is the number of items that pattern x contains.

– area(x) = f req(x)× size(x).
– min(x.att) (resp. max(x.att)) is the smallest (resp. highest) value of the item values

of x for attribute att.

– average(x.att) is the average value of the item values of x for attribute att.

– mean(x) = (min(x.att)+max(x.att))/2.

Considering the dataset described in Table 1, we have: freq(BC)=5, size(BC)=2 and

area(BC)=10. Moreover, average(BCD.price)=30 and mean(BCD.price)=25.

In many applications, it is highly appropriated to look for contrasts between subsets

of transactions, such as toxic and non toxic molecules in chemoinformatics (see Sec-

tion 6.1). The growth-rate is a well-used contrast measure highlighting patterns whose

frequency increases significantly from one subset to another [14]:

Definition 1 (Growth rate). Let T be a database partitioned into two subsets D1 and

D2. The growth rate of a pattern x from D2 to D1 is:

mgr(x) =
|D2|× f req(x,D1)

|D1|× f req(x,D2)

The collection of patterns contains redundancy w.r.t. measures. Given a measure m,

two patterns xi and x j are said to be equivalent if m(xi) =m(x j). A set of equivalent pat-

terns forms an equivalent class w.r.t. m. The largest element (i.e. the one with the highest

number of items) of an equivalence class is called a closed pattern. More formally, a

pattern xi is closed w.r.t. m iff ∀x j � xi,m(x j) �= m(xi). The set of closed patterns is a

compact representation of the patterns (i.e we can derive all the patterns with their exact

value for m from the closed ones). This definition is straightforwardly extended to a set

of measures M.

2.2 Skypatterns

Skypatterns have been recently introduced by [19]. Such patterns enable to express a

user-preference point of view according to a dominance relation. Given a set of patterns,

the skypattern set contains the patterns that are not dominated by any other pattern.
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Definition 2 (Dominance). Given a set of measures M, a pattern xi dominates another

pattern x j with respect to M (denoted by xi ≻M x j), iff ∀m ∈ M,m(xi) ≥ m(x j) and

∃m ∈ M,m(xi)> m(x j).

Consider the example in Table 1 with M={ f req,area}. Pattern BCD dominates pattern

BC because f req(BCD)= f req(BC)=5 and area(BCD)>area(BC). For M={ f req,size,
average}, pattern BDE dominates pattern BCE because f req(BDE)= f req(BCE)=4,

size(BDE)=size(BCE)=3 and average(BDE.price)>average(BCE.price).

Definition 3 (Skypattern operator). Given a pattern set P ⊆ LI and a set of mea-

sures M, a skypattern of P with respect to M is a pattern not dominated in P with respect

to M. The skypattern operator Sky(P,M) returns all the skypatterns of P with respect to

M: Sky(P,M) = {xi ∈ P | � ∃x j ∈ P,x j ≻M xi}.

The skypattern mining problem is thus to evaluate the query Sky(LI ,M). For in-

stance, from the data set in Table 1 and with M={ f req,size}, Sky(LI ,M) = {ABCDEF,
BCDEF,ABCDE,BCDE,BCD,B,E} (see Fig. 1a). The shaded area is called the forbid-

den area, as it cannot contain any skypattern. The other part is called the dominance

area. The edge of the dominance area (bold line) marks the boundary between them.

3 The Soft Skypattern Mining Problem

This section introduces the notion of softness in the skypattern mining problem. As the

skypatterns suffer from the stringent aspect of the constraint-based pattern framework,

we propose to capture valuable patterns occurring in the forbidden area (that we call

soft skypatterns). We define two kinds of soft skypatterns: the edge-skypatterns that

belongs to the edge of the dominance area (see Section 3.1) and the δ -skypatterns that

are close to this edge (see Section 3.2). The key idea is to strengthen the dominance

relation in order to soften the notion of non dominated patterns.

3.1 Edge-Skypatterns

Edge-skypatterns are defined according to a dominance relation and a Sky operator.

Definition 4 (Strict Dominance). Given a set of measures M, a pattern xi strictly dom-

inates a pattern x j with respect to M (denoted by xi ≫M x j), iff ∀m ∈ M, m(xi)> m(x j).

Definition 5 (Edge-skypattern operator). Given a pattern set P ⊆ LI and a set

of measures M, an edge-skypattern of P, with respect to M, is a pattern not strictly

dominated in P, with respect to M. The operator Edge-Sky(P,M) returns all the edge-

skypatterns of P with respect to M: Edge-Sky(P,M) = {xi ∈ P | � ∃x j ∈ P,x j ≫M xi}

Given a set of measures M, the edge-skypattern mining problem is thus to evaluate the

query Edge-Sky(P,M). Fig. 1a depicts the 28=7+(4+8+3+4+2) edge-skypatterns ex-

tracted from the example in Table 1 for M={ f req,size}. Obviously, all edge-skypatterns

belong to the edge of the dominance area, and seven of them are skypatterns.

Proposition 1. For two patterns xi and x j, xi ≫M x j =⇒ xi ≻M x j. So, for a pattern

set P and a set of measures M, Sky(P,M) ⊆ Edge-Sky(P,M).
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3.2 δ -Skypatterns

In many cases the user is interested in patterns close to the border of the dominance

area because they express a trade-off between the measures. The δ -skypatterns address

this issue where δ means a percentage of relaxation allowed by the user. Let 0 < δ ≤ 1.

Definition 6 (δ -Dominance). Given a set of measures M, a pattern xi δ -dominates

another pattern x j w.r.t. M (denoted by xi ≻
δ
M x j), iff ∀m ∈ M, (1−δ )×m(xi)> m(x j).

Definition 7 (δ -Skypattern operator). Given a pattern set P ⊆ LI and a set of mea-

sures M, a δ -skypattern of P with respect to M is a pattern not δ -dominated in P with

respect to M. The δ -skypattern operator δ -Sky(P,M) returns all the δ -skypatterns of P

with respect to M: δ -Sky(P,M) = {xi ∈ P | � ∃x j ∈ P : x j ≻
δ
M xi}.

The δ -skypattern mining problem is thus to evaluate the query δ -Sky(P,M). There

are 38 (28+10) δ -skypatterns extracted from the example in Table 1 for M={ f req,size}
and δ=0.25. Fig. 1b only depicts the 10 δ -skypatterns that are not edge-skypatterns.

Intuitively, the δ -skypatterns are close to the edge of the dominance relation, the value

of δ is the maximal relative distance between a skypattern and this border.

Proposition 2. For two patterns xi and x j, xi ≻
δ
M x j =⇒ xi ≫M x j. So, for a pattern

set P and a set of measures M, Edge-Sky(P,M)⊆ δ -Sky(P,M).

To conclude, given a pattern set P ⊆ LI and a set of measures M, the following

inclusions hold: Sky(P,M)⊆ Edge-Sky(P,M)⊆ δ -Sky(P,M).

4 Mining (Soft-) Skypatterns Using Dynamic CSP

This section describes how the skypattern and the soft skypattern mining problems can

be modeled and solved using Dynamic CSP [22]. The implementation was carried out

in Gecode by extending the CP-based pattern extractor developed by [9]. The main

idea of our of approach is to improve the mining step during the process thanks to

constraints dynamically posted and stemming from the current set of the candidate sky-

patterns. This process stops when the forbidden area cannot be enlarged. Finally, the

completeness of our approach is ensured by the completeness of the CP solver.

(a) Edge-skypatterns. (b) δ -skypatterns (that are not edge ones).

Fig. 1. Soft-skypatterns extracted from the example in Table 1
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4.1 Dynamic CSP

A Dynamic CSP [22] is a sequence P1,P2, ...,Pn of CSP, each one resulting from some

changes in the definition of the previous one. These changes may affect every compo-

nent in the problem definition: variables, domains and constraints. For our approach,

changes are only performed by adding new constraints. Solving such dynamic CSP

involves solving a single CSP with additional constraints posted during search. Each

time a new solution is found, new constraints are imposed. Such constraints will sur-

vive backtracking and state that next solutions should verify both the current set of

constraints and the added ones.

4.2 Mining Skypatterns

Constraints on the dominance relation are dynamically posted during the mining pro-

cess and softness is easily introduced using such constraints. Variable x will denote

the (unknown) skypattern we are looking for. Changes are only performed by adding

new constraints. So, we consider the sequence P1,P2, ...,Pn of CSP where M is a set of

measures, each Pi = ({x},L ,qi(x)) and:

- q1(x) = closedM(x)
- qi+1(x) = qi(x)∧φi(x) where si is the first solution to query qi(x)

First, the constraint closedM(x) states that x must be a closed pattern w.r.t M, it allows to

reduce the number of redundant patterns (see Section 2.1). Then, the constraint φi(x)≡
¬(si ≻M x) states that the next solution (which is searched) will not be dominated by si.

Using a short induction proof, we can easily argue that query qi+1(x) looks for a pattern

x that will not be dominated by any of the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is found, we dynamically post a new

constraint φi(x) leading to reduce the search space. This process stops when we cannot

enlarge the forbidden area (i.e. there exits n s.t. query qn+1(x) has no solution). For

skypatterns, φi(x) states that ¬(si ≻M x) (see Definition 2):

φi(x)≡

(

∨

m∈M

m(si)< m(x)

)

∨

(

∧

m∈M

m(si) = m(x)

)

But, the n extracted patterns s1, s2, . . ., sn are not necessarily all skypatterns. Some of

them can only be ”intermediate” patterns simply used to enlarge the forbidden area. A

post processing step must be performed to filter all candidate patterns si that are not

skypatterns, i.e. for which there exists s j (1 ≤ i < j ≤ n) s.t. s j dominates si. So mining

skypatterns is achieved in a two-steps approach:

1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.

2. Remove all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large (the skypattern mining prob-

lem is NP-complete), it remains reasonably-sized in practice for the experiments we

conducted (see Table 2 for the case study in chemoinformatics).

4.3 Mining Soft Skypatterns

Soft skypatterns are processed exactly the same way as skypatterns. Each kind of soft

skypatterns has its own constraint φi(x) according to its relation of dominance.
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For edge-skypatterns, φi(x) states that ¬(si ≫M x) (see Definition 4):

φi(x)≡
∨

m∈M

m(si)≤ m(x)

For δ -skypatterns, φi(x) states that ¬(si ≻
δ
M x) (see Definition 6):

φi(x)≡
∨

m∈M

(1− δ )×m(si)< m(x)

As previously, the n extracted patterns are not necessarily all soft skypatterns. So, a post

processing is also required as for skypatterns. Once again, the number of candidates (n)

remains reasonably-sized in practice for the experiments we conducted (see Table 2 for

the case study in chemoinformatics and Figure 5 for UCI benchmarks).

4.4 Pattern Encoding

Let d be the 0/1 matrix where ∀t ∈T ,∀i ∈I , (dt,i = 1)⇔ (i ∈ t). Pattern variables are

set variables represented by their characteristic function with boolean variables. [4,7]

model an unknown pattern x and its associated dataset T by introducing two sets of

boolean variables: {Xi | i ∈ I } where (Xi = 1) ⇔ (i ∈ x), and {Tt | t ∈ T } where

(Tt = 1)⇔ (x ⊆ t). Each set of boolean variables aims at representing the characteristic

function of the unknown pattern.

The relationship between x and T is modeled by posting reified constraints stating

that, for each transaction t,(Tt = 1) iff t is covered by x:

∀t ∈ T ,(Tt = 1)⇔ ∑
i∈I

Xi × (1− dt,i) = 0 (1)

4.5 Closedness Constraints

Section 2.1 recalls the definition of closed patterns satisfying closedness constraints.

Let M={min} and val( j) a function that associates an attribute value to each item j. If

item i belongs to x, then its value must be greater than or equal to the min. Conversely,

if this value is greater than or equal to the min, i must belong to x (if not, x would not

be maximal for inclusion). So, x is a closed pattern for the measure min iff:

∀i ∈ I ,(Xi = 1)⇔ val(i)≥ min{val( j) | j ∈ x} (2)

Let M={ f req}, the closedness constraint ensures that a pattern has no superset with

the same frequency. So closedM(x) is modeled using Equation 1 and Equation 3.

∀i ∈ I ,(Xi = 1)⇔ ∑
t∈T

Tt × (1− dt,i) = 0 (3)

There are equivalences between closed patterns according to measures: the closed

patterns w.r.t mean and min are the same and the closed patterns w.r.t area, growth-

rate and frequency are the same [19]. The constraint closedM(x) states that x must be a

closed pattern w.r.t M (the closed patterns w.r.t M gather the closed patterns w.r.t each

measure of M i.e. x is closed w.r.t M iff x is closed for at least one measure m ∈ M).
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5 Related Work

Computing skylines is a derivation from the maximal vector problem in computational

geometry [13], the Pareto frontier [10] and multi-objective optimization. Since its redis-

covery within the database community by [3], several methods have been developed for

answering skyline queries [15,16,20]. These methods assume that tuples are stored in

efficient tree data structures. Alternative approaches have also been proposed to help the

user in selecting most significant skylines. For example, [11] measures this significance

by means of the number of points dominated by a skyline.

Introducing softness for skylines. [8] have proposed thick skylines to extend the con-

cept of skyline. A thick skyline is either a skyline point pi, or a point p j dominated by

a skyline point pi and such that p j is close to pi. In this work, the idea of softness is

limited to metric semi-balls of radius ε>0 centered at points pi, where pi are skylines.

Computing skypatterns is different from computing skylines. Skyline queries focus

on the extraction of tuples of the dataset and assume that all the elements are in the

dataset, while the skypattern mining task consists in extracting patterns which are ele-

ments of the frontier defined by the given measures. The skypattern problem is clearly

harder because the search space for skypatterns is much larger than the search space for

skylines: O(2|I |) instead of O(|T |) for skylines.

Computing skypatterns. [19] have proposed Aetheris, an approach taking benefit

of theoretical relationships between pattern condensed representations and skypatterns.

Aetheris proceeds in two steps. First, condensed representations of the whole set of

patterns (i.e. closed patterns according to the considered set of measures) are extracted.

Then, the operator Sky (see Definition 3) is applied. Nevertheless, this method can only

use a crisp dominance relation. [17] deals with skyline graphs but their technique only

maximizes two measures (number of vertices and edge connectivity).

CP for computing the Pareto frontier. [6] has proposed an algorithm that provides the

Pareto frontier in a CSP. This algorithm is based on the concept of nogoods and uses

spatial data structures (quadtrees) to arrange the set of nogoods. This approach deals

for computing skylines and cannot be directly applied to skypatterns. The application is

not immediate since several different patterns may correspond to a same point (they all

have the same values for the considered measures). As experiments show the practical

efficiency of our approach, we have considered that adding [6] to a constraint solver

would require an important development time compared to the expected benefits.

6 Experimental Study

First, we report in depth a case study in chemoinformatics by performing a CPU time

analysis as well as a qualitative analysis that demonstrates the usefulness and the interest

of soft skypatterns (see Section 6.1). Then, using experiments on UCI benchmarks, we

show and discuss the practical issues of our approach (see Section 6.2).

Aetheris and CP+SKY (hard version of the skypatterns) produce exactly the same

set of skypatterns. So, the same outputs are compared Section 6.1.2 (Table 2, sky-

patterns part) and Section 6.2.1 (Fig 4 and Fig 5). Up to now, there is a single work

(Aetheris [19]) to extract skypatterns, no other comparison is possible on skypatterns.

Finally, soft skypatterns are completely new and there is no other competitor.
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All experiments were conducted on a computer running Linux operating system with

a core i3 processor at 2.13 GHz and a RAM of 4 GB. Aetheriswas kindly provided by

A. Soulet and used in [19]. The implementation of CP+SKY was carried out in Gecode

by extending the CP-based patterns extractor developed by [9].

6.1 Case Study: Discovering Toxicophores

A major issue in chemoinformatics is to establish relationships between chemicals and

their activity in (eco)toxicity. Chemical fragments1 which cause toxicity are called tox-

icophores and their discovery is at the core of prediction models in (eco)toxicity [1,18].

The aim of this study, which is part of a larger research collaboration with the CERMN

Lab, is to investigate the use of softness for discovering toxicophores.

6.1.1 Experimental Protocol. The dataset is collected from the ECB web site2. For

each chemical, the chemists associate it with hazard statement codes (HSC) in 3 cate-

gories: H400 (very toxic, CL50 ≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L),

and H402 (harmful, 10 mg/L < CL50 ≤ 100 mg/L). We focus on the H400 and H402

classes. The dataset T consists of 567 chemicals (transactions), 372 from the H400

class and 195 from the H402 class. The chemicals are encoded using 1450 frequent

closed subgraphs (items) previously extracted3 with a 1% relative frequency threshold.

In order to discover patterns as candidate toxicophores, we use both measures typi-

cally used in contrast mining [14] such as the growth rate (see Definition 1) since toxi-

cophores are linked to a classification problem and measures expressing the background

knowledge such as the aromaticity because chemists consider that this information may

yield promising candidate toxicophores. Now, we describe these three measures.

- Growth rate. When a pattern has a frequency which significantly increases from the

H402 class to the H400 class, then it stands a potential structural alert related to an

excess of the toxicity: if a chemical has, in its structure, fragments that are related to an

effect, then it is more likely to be toxic. Emerging patterns embody this natural idea by

using the growth-rate measure.

- Frequency. Real-world datasets are often noisy and patterns with low frequency may

be artefacts. The minimal frequency constraint ensures that a pattern is representative

enough (i.e., the higher the frequency, the better is).

- Aromaticity. Chemists know that the aromaticity is a chemical property that favors

toxicity since their metabolites can lead to very reactive species which can interact with

biomacromolecules in a harmful way. We compute the aromaticity of a pattern as the

mean of the aromaticity of its chemical fragments.

We consider four sets of measures: M1={growth-rate, f req}, M2={growth-rate,
aromaticity}, M3={ f req,aromaticity} and M4={growth-rate, f req, aromaticity}. Re-

dundancy is reduced by using closed skypatterns (see Section 4.2). For δ -skypatterns,

we consider two values: δ = 0.1 and δ = 0.2. The extracted skypatterns and soft sky-

patterns are made of molecular fragments. To evaluate the presence of toxicophores, an

expert analysis leads to the identification of well-known toxicophores.
1 A fragment denotes a connected part of a chemical structure having at least one chemical bond.
2 European Chemicals Bureau: http://echa.europa.eu/
3 A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph of T .

http://echa.europa.eu/
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Table 2. Skypattern mining on ECB dataset
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M1 8 613 18m:34s 41,887 19m:20s 24 1,746 19m:02s 25 4,204 20m:48s 87 6,253 22m:36s

M2 5 140 15m:32s 53,201 21m:33s 76 688 17m:51s 354 1,678 18m:14s 1,670 2,816 23m:44s

M3 2 456 16m:45s 157,911 21m:16s 72 1,726 16m:50s 352 4,070 19m:43s 1,654 6,699 22m:25s

M4 21 869 17m:49s 12,126 21m:40s 144 3,021 20m:27s 385 6,048 23m:36s 1,724 8,986 30m:14s

6.1.2 Performance Analysis. Table 2 reports, for each set of measures Mi: (i) the

number of skypatterns that is the same for both approaches, (ii) for CP+SKY, the number

of candidates (see Section 4.2) and the associated CPU-time and (iii) for Aetheris,

the number of closed patterns and the associated CPU-time, (iv) the number of edge-

skypatterns that are not skypatterns, the number of candidates and the required CPU-

time, and (v) the number of δ -skypatterns that are not edge-skypatterns, the number of

candidates and the required CPU-time. For each method, reported CPU-times include

the two steps.

CP+SKY outperforms Aetheris in terms of CPU-times (see Table 2, skypatterns

part). Moreover, the number of candidates generated by our approach remains small

compared to the number of closed patterns computed by Aetheris. Aetheris applies

the skypattern operator on the whole set of closed patterns (column 4) whereas CP+SKY

applies the skypattern operator on a subset of the closed patterns (column 2). That

explains why the numbers in column 2 are lower than the numbers in column 4. It

shows the interest of the CP approach: thanks to the filtering of dynamically posted

constraints, the search space is drastically reduced.

Finally, the number of soft skypatterns remains reasonably small. For edge skypat-

terns, there is a maximum of 144 patterns, while for δ -skypatterns, there is a maximum

of 1,724 patterns (δ = 0.2).

6.1.3 Qualitative Analysis. In this subsection, we show that soft skypatterns enable

(i) to efficiently detect well-known toxicophores emphasized by skypatterns, and (ii) to

discover new and interesting toxicophores that would be missed by skypatterns.

- Growth rate and frequency measures (M1). Only 8 skypatterns are found, and 3

well-known toxicophores are emphasized (see Figure 2). Two of them are aromatic

compounds, namely the chlorobenzene (p1) and the phenol rings (p2). The third one,

the organophosphorus moiety (p3) is a component occurring in numerous pesticides.

Soft skypatterns confirm the trends given by skypatterns: the chloro-substituted aro-

matic rings (e.g. p4), and the organophosphorus moiety (e.g. p5) are detected by both

the edge-skypatterns and by the δ -skypatterns.

- Growth rate and aromaticity measures (M2). As results for M2 and M3 are similar,

we only report the qualitative analysis for M2. Edge-skypatterns leads to the extraction
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Fig. 2. Analysing the (soft-) skypatterns for M1

of four new toxicophores: (i) nitrogen aromatic compounds: indole and benzoimidazole,

(ii) S-containing aromatic compounds: benzothiophene, (iii) aromatic oxygen com-

pounds: benzofurane, and (iv) polycyclic aromatic hydrocarbons: naphthalene.

δ -skypatterns complete the list of the aromatic rings, which were not found with the

skypatterns, namely biphenyl.

- Growth rate, frequency and aromaticity measures (M4). The most interesting results

are provided using M4. Table 3 shows the ratios analysis for the (soft-) skypatterns.

Col. 1 provides the name of toxicophores. Col. 2-5 give the number of (soft-) sky-

patterns containing one complete4 representative fragment of each toxicophore and,

between parentheses, their ratios (# of (soft-) skypatterns containing this toxicophore

divided by the total # of (soft-) skypatterns, in bold at the 2nd row). Col. 6 (resp. Col. 7)

gives the number of chemicals classified H400 i.e. high toxicity (resp. H402 i.e. harm-

ful) containing at least one representative fragment of the toxicophore. Col. 8-10 show

the gains provided by using soft skypatterns for discovering toxicophores (ratio soft

skypatterns divided by ratio skypatterns). Bold numbers denote a gain greater than 1

and ∞ means that the toxicophore is only found by soft skypatterns.

21 skypatterns are mined (see Figure 3), and several well-known toxicophores are

emphasized: the phenol ring (e4), the chloro-substituted aromatic ring (e3), the alkyl-

substituted benzene (e2), and the organophosphorus moiety (P1). Besides, information

dealing with nitrogen aromatic compounds are also extracted (e1). Table 3 details the

repartition of the skypatterns containing only one complete toxicophore compound,

according to the toxicophores discussed above. We can observe that very few patterns

are extracted.

4 Patterns with only sub-fragments of a toxicophore are not taken into account.
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Fig. 3. Analysing the (soft-) skypatterns for M4

Table 3. Ratio analysis of (soft-)skypattern mining

Gain

Chemical (2) (3) (4) (5) (6) (7) (3) (4) (5)

21 165 550 1889

Benzene 4 (0.19) 68 (0.41) 322 (0.59) 1373 (0.73) 63.7 18.9 2.16 3.11 3.84

Chlorobenzene 1 (0.05) 2 (0.01) 51 (0.09) 311 (0.16) 22.5 2.5 0.20 1.80 3.20

Phenol 1 (0.05) 11 (0.07) 32 (0.06) 302 (0.16) 25.2 3.5 1.40 1.20 3.20

Organophosphate
Basic 2 (0.10) 18 (0.11) 30 (0.05) 40 (0.02) 18.0 2.5 1.10 0.50 0.20

Exotic 38 (0.23) 66 (0.12) 112 (0.06) 18.0 2.5 ∞ ∞ ∞

Nitrogen aromatic rings 15 (0.09) 74 (0.13) 175 (0.09) 8.6 2.0 ∞ ∞ ∞

Polycyclic aromatic rings 12 (0.07) 178 (0.32) 302 (0.16) 7.2 3.5 ∞ ∞ ∞

Alkyl-substituted benzene 4 (0.02) 64 (0.12) 649 (0.34) 30.9 11.7 ∞ ∞ ∞

Aniline 15 (0.03) 259 (0.14) 24.7 11.3 ∞ ∞

Alkyl-substituted aniline 157 (0.08) 12.0 7.1 ∞

Chlorophenol 168 (0.09) 9.6 1.5 ∞

Alkyl phenyl ether 106 (0.06) 9.9 3.0 ∞

Alkyl-substituted phenol 61 (0.03) 9.6 1.5 ∞

Dichlorobenzene 59 (0.03) 9.9 1.5 ∞

(2) Skypatterns (3) Edge-Skypatterns

(4) δ -Skypatterns (δ = 0.1) (5) δ -Skypatterns (δ = 0.2)

(6) coverage rate on H400 (%) (7) coverage rate on H402 (%)
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Soft skypatterns enable to detect more precisely the first four toxicophores (see Ta-

ble 3). For instance, 41% of edge-skypatterns extracted contain the benzene ring, against

19% for hard skypatterns (gain of 2.16: egde-skypatterns detect 2.16 times more pat-

terns containing this fragment compared to hard ones). This gain reaches about 3.11

(resp. 3.84) for δ = 0.1 (resp. 0.2). The same trends hold for chlorobenzene and phenol

rings, where 16% of extracted δ -skypatterns (δ = 0.2) include such fragments, against

5% in the hard case (gain of 3.20). From a chemical point of view, these fragments cover

well the H400 molecules (from 18% to 63.7%), as is shown in Col. 6, thus demonstrat-

ing the toxic nature of the extracted patterns, particularly in the soft case.

Regarding the aromatic rings previously discussed (gray lines of Table 3), several

new patterns containing these toxicophores are only mined by soft skypatterns. δ -

skypatterns (with δ=0.1) allow to better discover these toxicophores compared to edge-

skypatterns (average gain of about 4). Moreover, several patterns with novel fragments

of a great interest are solely detected by δ -skypatterns (yellow lines in Table 3), par-

ticularly with δ=0.2. It is important to note that 22% of these patterns include aro-

matic amines (12% for aniline and 8% for substituted anilines). These two toxicophores,

which cover respectively 24.7% and 12% of molecules classified H400, are very harm-

ful to aquatic organisms. The other toxicophores are extracted by δ -skypatterns with

ratios ranging from 3% to 9%.

To conclude, soft skypatterns enable to efficiently detect well-known toxicophores

emphasized by skypatterns, and to discover new and interesting toxicophores that would

be missed by skypatterns.

6.2 Experiments on UCI Benchmarks

Our experiments on UCI5 benchmarks thoroughly investigate the behavior on CP+SKY

and Aetheriswith sets of 4 or 5 measures. We made this choice because the user often

handles a limited number of measures when dealing with applications on real-world

datasets (see for instance our case study in chemoinformatics in Section 6.1).

Experiments were carried out on 23 various (in terms of dimensions and density)

datasets (see Col 1 of Table 4). We considered 5 measures M6={ f req, max, area, mean,

growth-rate} and 6 sets of measures: M6 and all the combinations of 4 measures from

M6 (noted M1, M2, M3, M4 and M5). Measures using numeric values, like mean, were

applied on attribute values that were randomly generated within the range [0..1]. For

each method, reported CPU-times include the two steps.

6.2.1 Mining Skypatterns. Figure 4 shows a scatter plot of CPU-times for CP+SKY

and Aetheris. Each point represents a skypattern query for a dataset: its x-value is the

CPU-time the CP+SKYmethod took to mine it, its y-value is the CPU-time of Aetheris.

We associate to each dataset a color. Moreover, we only report CPU-times for the 6

datasets requiring more than 30 seconds, either for CP+SKY or Aetheris. For both

approaches, CPU times are very small and quite similar on the remaining 17 datasets.

CP+SKY outperforms Aetheris on many datasets (e.g. almost all of the points are in

the left part of the plot field of Figure 4). The only exception is the dataset mushroom.

This dataset, which is the largest one (both in terms of transactions and items) and with

5 http://www.ics.uci.edu/ mlearn/MLRepository.html
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Fig. 4. Comparing CPU times on 6 UCI datasets for M1, . . . ,M6

the lowest density (around 18%), leads to the extraction of a relatively small number of

closed patterns. This greatly promotes Aetheris.

Figure 5 compares, for each set of measures Mi (1≤i≤6), the number of closed pat-

terns for Aetheris with the number of candidates for CP+SKY. We also report the

Fig. 5. Comparing # of closed patterns, candidates and skypatterns on 6 datasets
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Table 4. Analysis of soft skypattern mining on UCI benchmarks for M6

CP+Edge-Sky
CP+δ-Sky
(δ = 5%)
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CP+δ-Sky
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abalone 28 4,178 0.321 2,634 36 1,373 38 1,432 38 6,303 38 7,256 42

anneal 68 798 0.195 3,162 28 8,184 34 20,242 35 24,029 37 27,214 36

austral 55 690 0.272 11,714 69 34,205 70 68,855 99 69,487 102 70,652 113

breast 43 286 0.231 1,409 1 17 1 1,651 1 2,429 1 2,443 1

cleve 43 303 0.325 14,636 19 4,466 19 30,605 22 30,952 22 50,275 23

cmc 28 1,474 0.357 14,406 31 3,297 32 3,351 32 11,848 33 14,020 33

crx 59 690 0.269 29,068 134 73,627 151 73,707 159 105,344 166 165,782 167

german 76 1,000 0.276 93,087 1,157 170,169 2,614 230,457 2,995 270,435 3,439 290,654 3,483

glass 34 216 0.295 2,296 1 109 1 1,531 1 2,491 1 4,035 1

heart 38 270 0.368 15,563 15 644 16 34,136 16 42,685 18 44,114 18

hepatic 45 155 0.421 15,002 24 6,122 24 45,572 25 50,686 25 60,857 26

horse 75 300 0.235 13,068 54 39,149 60 43,073 66 55,175 68 74,275 71

hypo 47 3,163 0.389 278,625 1,343 104,147 1,387 115,126 1,402 116,654 1,463 117,089 1,487

iris 15 151 0.333 55 1 20 1 27 1 49 1 67 1

lymph 59 142 0.322 8,286 19 49,846 19 59,753 20 62,143 20 65,946 21

mushroom 119 8,124 0.193 21,639 3,241 33,757 3,328 99,852 3,336 129,383 3,407 150,965 3,614

new-thyroid 21 216 0.287 119 1 41 1 137 1 154 1 173 1

page 35 941 0.314 2,675 18 7,136 19 9,714 19 17,387 21 19,094 22

pima 26 768 0.346 1,778 5 518 5 3,439 5 4,308 5 4,358 6

tic-tac-toe 29 259 0.344 6,800 16 4,078 18 18,584 19 20,130 20 22,576 21

vehicle 58 846 0.327 76,732 687 716 689 2,457 751 3,789 782 4,369 787

wine 45 179 0.311 3,155 5 2,490 5 4,422 5 7,507 5 13,407 6

zoo 43 102 0.394 2,254 2 3,361 2 4,829 2 7,724 2 8,986 2

number of skypatterns. The number of candidates generated by our approach remains

very small (some thousands) compared to the huge number of closed patterns computed

by Aetheris (about millions). Finally, the number of skypatterns remains small.

6.2.2 Mining Soft Skypatterns. This section shows the feasibility of mining soft sky-

patterns on UCI Benchmarks (for these experiments, parameter δ has been set to {0.05,

0.1, 0.15, 0.2}). As our proposal is the only approach able to mine soft skypatterns, it

is no longer compared with Aetheris. Table 4 reports, for each dataset (i) the number

of edge-skypatterns that are not (hard) skypatterns, the number of candidates and the

required CPU-time, (ii) for δ in {0.05, 0.1, 0.15, 0.2} the number for δ -skypatterns that

are not edge-skypatterns, the number of candidates and the required CPU-time. Even if

the number of soft patterns increases with δ , our approach remains efficient: there are

only 8 experiments out of 115 requiring more than 3,000 seconds.

7 Conclusion

We have introduced soft skypatterns and proposed a flexible and efficient approach

to mine skypatterns as well as soft ones thanks to Dynamic CSP. The relevance and
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the effectiveness of our approach have been highlighted through experiments on UCI

datasets and a case study in chemoinformatics.

In the future, we would like to continue to investigate where the CP approach leads

to new insights into the underlying data mining problems. Thanks to CP, we would

particularly like to introduce softness within other tasks such as clustering, and study

the contribution of soft skypatterns for recommendation.
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