
Computing Skypattern Cubes
Willy Ugarte1 and Patrice Boizumault1 and Samir Loudni1 and Bruno Crémilleux1

Abstract. We introduce skypattern cubes and propose an efficient
bottom-up approach to compute them. Our approach relies on deriva-
tion rules collecting skypatterns of a parent node from its child nodes
without any dominance test. Non-derivable skypatterns are computed
on the fly thanks to Dynamic CSP. The bottom-up principle enables
to provide a concise representation of the cube based on skypattern
equivalence classes without any supplementary effort. Experiments
show the effectiveness of our proposal.

1 Introduction

The notion of skyline queries [1] has been recently integrated into
the pattern discovery paradigm to mine skyline patterns (henceforth
called skypatterns) [10, 11]. Given a set of measures, skypatterns are
patterns based on a Pareto-dominance relation for which no mea-
sure can be improved without degrading the others. As an exam-
ple, a user may prefer a pattern with a high frequency, large size
and a high confidence. In this example, a pattern xi dominates an-
other pattern xj if freq(xj) ≥ freq(xi), size(xj) ≥ size(xi),
confidence(xj) ≥ confidence(xi) where at least one strict in-
equality holds. Given a set of patterns, the skypattern set contains
the patterns that are not dominated by any other pattern. Skypatterns
are highly interesting because they do not require any threshold on
the measures and the dominance relation gives to the skypatterns a
global interest with semantics easily understood by the user.

In practice, users do not know the exact role of each measure
which be used and it is difficult to beforehand select the most ap-
propriate set of measures. Users would like to keep all the measures
potentially useful, look what happens on a skypattern set by remov-
ing or adding a measure to evaluate the impact of measures and then
converge to a proper skypattern set. Similarly to the notion of the
skyline cube in the database [9], users would like to have available
the skypattern cube. Each element of the cube is a node which as-
sociates to a subset of the measures its skypattern set. By comparing
two neighboring nodes, which are differentiated by adding or remov-
ing one measure, users can observe the new skypatterns and the ones
which die out. It greatly helps to better understand the role of the
measures. Moreover, users can spot that different subsets of mea-
sures have the same skypattern set: such an equivalence class over
subsets of measures shows useless measures (i.e., measures that can
be added to a set of measures without changing the skypattern set).
To sum up, the cube is the proper structure to enable various user
queries in an efficient manner and to discover the most interesting
skypattern sets.

More formally, given a set M of n measures, the 2n−1 possible
non-empty skypattern subsets should be precomputed to efficiently

1 GREYC (CNRS UMR 6072), University of Caen Basse-Normandie, Boule-
vard du Maréchal Juin, 14032 CAEN cedex 5 - France.

handle various queries of users. A baseline method to build the sky-
pattern cube needs the computing of the skypatterns on every mea-
sure subset and incurs a prohibitive cost. Therefore the problem of
efficient computing of the skypattern cube is the focus of this paper.

For computing the skypattern cube, we propose a bottom-up ap-
proach motivated by the following observations. First, we formally
give two derivation rules providing an easy way to automatically in-
fer a large proportion of the skypatterns of a parent node from the
skypattern sets of its child nodes without any dominance test (if k
measures are associated to a parent node, its child nodes are the nodes
defined by the

(
k

k−1

)
subsets of k − 1 measures). For the new sky-

patterns of a parent node (i.e., skypatterns which are not skypatterns
in its child nodes), we give an efficient technique based on dynamic
CSP to mine them on the fly. We show that in practice the num-
ber of new skypatterns remains low. Second, we demonstrate how
the bottom-up principle enables us to determine skypattern equiva-
lence classes without any supplementary effort. This result has the
advantage to provide a more concise cube, highlighting the measures
giving the same skypattern set. Third, experiments conducted on real-
life datasets show the practical effectiveness achieved by our formal
results. To sum up, to the best of our knowledge, we designed the
first method to build the skypattern cube without enumerating and
mining all the possible skypatterns.

This paper is organized as follows. After introducing the back-
ground in Section 2, we present in Section 3 the formal properties to
automatically infer skypatterns and build the concise representation
of the cube. Section 4 describes our CSP method to mine the new
skypatterns. We discuss related work in Section 5. Section 6 presents
the experiments and we conclude in Section 7.

2 Skypattern Cube
2.1 Context and Definitions
Let I be a set of distinct literals called items. An itemset (or pattern)
is a non-null subset of I. The language of itemsets corresponds to
LI = 2I\∅. A transactional dataset T is a multiset of patterns of
LI . Fig. 1a depicts a transactional dataset T where each transaction
(or pattern) ti is described by items denoted A,. . . ,F . The traditional
example is a supermarket database in which each transaction corre-
sponds to a customer and every item in the transaction is a product
bought by the customer. An attribute (price) is associated to each
product (see Fig. 1a).

Constraint-based pattern mining aims at extracting all patterns x
of LI satisfying a query q(x) (conjunction of constraints) which is
usually called theory [5]: Th(q) = {x ∈ LI | q(x) is true}. A
common example is the frequency measure leading to the minimal
frequency constraint (freq(x) ≥ θ). The latter provides patterns
x having a number of occurrences in the dataset exceeding a given
minimal threshold θ. There are other usual measures for a pattern x:

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Item A B C D E F

Price 30 40 10 40 70 55

(a) Transactional dataset T .

(b) Skypatterns for M={freq, area}.
(c) Lattice associated to M .

Subset of M Skypattern set
{m1, m2, m3, m4} {BCDE, BCD, BDE, EF, BE,

E}
{m1, m2, m3} {BCDE, BCD, BE, E}
{m1, m2, m4} {E}
{m1, m3, m4} {BCDE, BCD, BDE, EF, BE,

E}
{m2, m3, m4} {BCDE, BDE, EF, E}
{m1, m2} {E}
{m1, m3} {BCDE, BCD, B, E}
{m1, m4} {E}
{m2, m3} {BCDE}
{m2, m4} {E}
{m3, m4} {BCDE, BDE, EF, E}
{m1} {B, E}
{m2} {ABCDEF, ABCEF, AB-

DEF, ABEF, ABCDE, ABCE,
ABDE, ABE, ACDEF, ACEF,
ACDE, ACE, ADEF, ADE,
AEF, AE, BCDEF, BCEF,
CDEF, CEF, BCDE, BCE,
CDE, CE, BDEF, DEF, BDE,
DE, BEF, EF, BE, E}

{m3} {BCDE}
{m4} {E}

(d) Skypattern cube for M .

Figure 1: M={m1: freq,m2: max,m3: area,m4: mean}.

• area(x) = freq(x)× size(x).
• min(x.att) (resp. max(x.att)) is the smallest (resp. highest) value

of the set of item values of x for attribute att.
• mean(x) = (min(x.att) +max(x.att))/2.

Example 1 For the dataset in Fig. 1a, freq(BC)=5, area(BC)=10
and mean(BCD.price)=25.

A pattern xi is closed w.r.t. a measure m iff ∀xj) xi,m(xj) 6=
m(xi). The set of closed patterns is a compact representation of the
patterns (i.e we can derive all the patterns with their exact value form
from the closed ones). This definition is straightforwardly extended
to a set of measures M .

2.2 Skypatterns
As stated above, skypatterns enable to express a user-preference
point of view according to a dominance relation [10].

Definition 1 (Pareto Dominance) Given a set of measures M , a
pattern xi dominates another pattern xj w.r.t.M (denoted by xi �M

xj), iff ∀m ∈M,m(xi) ≥ m(xj) and ∃m ∈M,m(xi) > m(xj).

Definition 2 (Skypattern and skypattern operator) Given a set of
measures M , a skypattern w.r.t. M is a pattern not dominated w.r.t.
M . The skypattern operator Sky(M) returns all the skypatterns
w.r.t. M : Sky(M) = {xi ∈ LI | 6 ∃xj ∈ LI , xj �M xi}

Example 2 From T and with M={freq, area}, BCD
dominates BC as freq(BCD)=freq(BC)=5 and
area(BCD)>area(BC) (cf. Fig. 1a). Fig. 1b provides a
graphical representation of Sky(M) = {BCDE,BCD,B,E}.
The shaded area is called the forbidden area since it cannot contain
any skypattern. The other part is called the dominance area.

Let M be a set of measures. Two patterns xi and xj are indistinct
w.r.t. M (denoted by xi =M xj) iff ∀m ∈ M,m(xi) = m(xj).
Two patterns xi and xj are incomparable w.r.t. M (denoted by
xi ≺�M xj) iff (xi 6�M xj) and (xj 6�M xi) and (xi 6=M xj).

Definition 3 (Incomparable Skypattern) A pattern x ∈ Sky(M)
is incomparable w.r.t M iff ∀xi ∈ Sky(M) s.t. xi 6=x, xi ≺�M x.

Definition 4 (Indistinct Skypattern) A pattern x ∈ Sky(M) is in-
distinct w.r.t. M iff ∃xi ∈ Sky(M) s.t. (xi 6= x) ∧ (xi =M x).

Incomparable skypatterns and indistinct ones w.r.t. M constitute a
partition of Sky(M). Moreover, =M is an equivalence relation (i.e.,
the relation is reflexive, symmetric and transitive). So, indistinct sky-
patterns can be gathered into a group. This remark will be precious
for the derivation rule on indistinct skypatterns.

Definition 5 (Indistinct Skypattern Group (ISG)) S⊆Sky(M) is
an indistinct skypattern group w.r.t. M , iff |S|≥ 2 and ∀xi,xj∈ S,
(xi =M xj) and ∀xi∈S, ∀xj∈Sky(M)\S, (xi ≺�M xj).

Example 3 For M={freq, area}, BCDE and BCD are incom-
parable. B and E are indistinct and belong to the same ISG.

2.3 Skypattern Cube
Let M be a set of measures. We define the skypattern cube over M
which consists of the 2|M|−1 skypattern sets Sky(Mu) on all pos-
sible non-empty subset Mu ⊆M .

Definition 6 (Skypattern Cube) Let M be a set of measures.
SkyCube(M) = {(Mu, Sky(Mu)) |Mu ⊆M,Mu 6= ∅}.

Example 4 Consider the dataset in Fig. 1a. Fig. 1c depicts the lat-
tice associated to M . Fig. 1d associates to each non-empty subset of
M its skypattern set.

3 Derivation Rules and Concise Representation
This section presents our bottom-up approach for computing the sky-
pattern cube. The key idea is to collect the skypatterns of a parent
node from the skypatterns of its child nodes. Then we compute the
missing skypatterns of the node (i.e., skypatterns that are not sky-
patterns in its child nodes and thus not yet mined). We show how a
concise representation of the cube is straightforwardly provided.

3.1 Derivation Rules
Theorems 1 states that all the incomparable skypatterns of a child
node remain incomparable skypatterns in its parent nodes. Theorem 2
exhibits the indistinct skypatterns of a child node that remain skypat-
terns in its parent nodes. These two theorems define two derivation
rules that enable to derive a subset of skypatterns of a parent node.

Theorem 1 (Incomparability Rule) Let Mu ⊆ M . If x is an
incomparable skypattern w.r.t. Mu then ∀m ∈ M\Mu, x ∈
Sky(Mu ∪ {m}). Moreover x is incomparable w.r.t. Mu ∪ {m}.

Proof (By Contradiction) Assume that x is an incomparable sky-
pattern w.r.t. Mu, and ∃m ∈M\Mu s.t. x 6∈ Sky(Mu ∪ {m}). So,
∃y 6=x ∈ LI , (y �Mu∪{m} x) i.e. (1) ∀mi ∈Mu ∪ {m},mi(y) ≥
mi(x) and (2) ∃mj ∈ Mu ∪ {m},mj(y) > mj(x). For (2), there
are two cases:
1. (mj=m). As x ∈ Sky(Mu), ∀mi ∈ Mu,mi(x) ≥ mi(y).

From (1), we deduce: ∀mi ∈Mu,mi(x) = mi(y). So x is indis-
tinct w.r.t. Mu. It contradicts that x is incomparable w.r.t. Mu.

2. (mj ∈ Mu). From (1), we have ∀mi ∈ Mu,mi(y) ≥ mi(x).
As, mj(y) > mj(x), we deduce that y �Mu x. It contradicts
that x is a skypattern w.r.t. Mu. �

Example 5 Let Mu={m1,m3}. BCDE and BCD are incompa-
rable w.r.t. Mu. Theorem 1 enables to deduce that BCDE and
BCD belong to Sky(Mu ∪ {m2}) and Sky(Mu ∪ {m4}).

Theorem 2 (ISG Rule) Let Mu ⊆ M and S an ISG w.r.t. Mu.
∀m ∈M\Mu, each skypattern x ∈ S s.t. m(x) = max

xi∈S
{m(xi)} is

a skypattern w.r.t. Mu ∪ {m}.

Proof (By Contradiction) Assume that there exists an ISG S w.r.t.
Mu s.t. ∃m∈M\Mu s.t. ∃x∈S s.t. m(x)=max

xi∈S
{m(xi)} and

x6∈Sky(Mu∪{m}). So, ∃y 6=x ∈ LI , (y �Mu∪{m} x) i.e. (1)
∀mi ∈ Mu ∪ {m},mi(y) ≥ mi(x) and (2) ∃mj ∈ Mu ∪
{m},mj(y) > mj(x). For (2), there are two cases:
1. (mj=m). As x ∈ Sky(Mu), ∀mi ∈ Mu,mi(x) ≥ mi(y).

From (1), we deduce: ∀mi ∈ Mu,mi(x) = mi(y), i.e. y ∈ S.
So, m(y) ≤ m(x) (as m(x) = max

xi∈S
{m(xi)}. It contradicts (2).

2. (mj ∈ Mu). From (1), we have ∀mi ∈ Mu,mi(y) ≥ mi(x).
As, mj(y) > mj(x), we deduce that y �Mu x. It contradicts
that x is a skypattern w.r.t. Mu. �

Example 6 S = {B,E} is an ISG w.r.t. {m1}. Theorem 2 enables
to deduce that:
• E ∈ Sky({m1,m2}) since m2(E) = max

xk∈S
{m2(xk)}

• E ∈ Sky({m1,m4}) since m4(E) = max
xk∈S
{m4(xk)}

• B,E ∈ Sky({m1,m3}) since m3(B)=m3(E)=max
xk∈S
{m3(xk)}

Corollary 1 Let S an ISG w.r.t. Mu, and m ∈ M\Mu. Let S′ =
{x ∈ S |m(x) = max

xi∈S
{m(xi)}. If S′ is a singleton then the unique

skypattern is incomparable w.r.t. Mu ∪ {m} else S′ is an ISG w.r.t.
Mu∪{m}. Finally all x ∈ S \S′ are not skypatterns forMu∪{m}.

3.2 Computing a Skypattern Cube
The skypatterns of a node are computed in two steps. First, we col-
lect all the skypatterns which can be derived from its child nodes.

Then the missing skypatterns (i.e., non-derivable skypatterns) are
computed. We start by defining the derivable skypatterns.

Let Mu ⊆ M and m ∈ M\Mu. We define inc(Mu) the set
of incomparable skypatterns w.r.t Mu and ind(Mu,m) the set of
maximal indistinct skypatterns w.r.t a measure m:
• inc(Mu) = {x ∈ Sky(Mu) | x is incomparablew.r.t.Mu}
• ind(Mu,m) =

⋃
{x ∈ S

ISGS⊆Sky(Mu)

| m(x) = max
xk∈S
{m(xk)}}

derived(Mu) is the set of skypatterns of the node associated to Mu

which can be derived from the skypatterns of its child nodes:

• derived(Mu) =
⋃

m∈Mu

(inc(Mu\{m}) ∪ ind(Mu\{m},m)).

First, it is obvious that: derived(Mu) ⊆ Sky(Mu) (see The-
orem 1 and 2). Experiments show that a large proportion of skypat-
terns are obtained by this way. Moreover, if a skypattern x in a parent
node is also a skypattern in at least one of its child nodes, then x will
be necessary collected by one of these rules. It is expressed by:
derived(Mu) = (

⋃
m∈Mu

Sky(Mu \ {m})) ∩ Sky(Mu).

This property shows the power of our derivation rules. (The
proof is immediate since, for each node, incomparable and indistinct
skypatterns constitute a partition.) However, derived(Mu) can be
strictly included in Sky(Mu), i.e., some skypatterns are missing. It
happens when a skypattern of a node is not a skypattern in any of its
child nodes as illustrated by the following example.
Example 7 As BCDE is incomparable w.r.t. {m3}, BCDE ∈
Sky({m1,m3}). As B and E constitute an ISG w.r.t. {m1} and
m3(B)=m3(E), then B,E ∈ Sky({m1,m3}). But, the derivation
rules cannot deduce that BCD ∈ Sky({m1,m3}).

We compute on the fly the non-derivable skypatterns thanks to
a dynamic CSP method described in Section 4. Moreover, we can
go further by detecting a priori that derived(Mu) = Sky(Mu) for
some Mu and thus avoiding useless computation. Theorem 3 states
a sufficient condition ensuring that derived(Mu) = Sky(Mu). Ex-
periments show that this condition is effective in practice.

Theorem 3 (Non-Computing Sufficient Condition) Let Mu⊆M .
If ∃m ∈ Mu s.t. min

x∈derived(Mu)
{m(x)} = max

x∈derived(Mu)
{m(x)}

then Sky(Mu) = derived(Mu).

Proof (By Contradiction) Let m ∈ Mu a measure s.t.
min

x∈derived(Mu)
{m(x)}= max

x∈derived(Mu)
{m(x)}

Assume that ∃p ∈ Sky(Mu) \ derived(Mu), so
m(p)= min

x∈derived(Mu)
{m(x)}= max

x∈derived(Mu)
{m(x)}. Hence-

forth m(p)=max
x∈LI

{m(x)}. Thus, p ∈ Sky({m}), and:

(i) either p is incomparable w.r.t. {m},
(ii) or p is indistinct w.r.t {m} with maximal value for m.

From (i) and (ii), p ∈ derived(Mu) leading to a contradiction. �

Finally, Algorithm 1 gives the pseudo-code of our bottom-up ap-
proach. It starts by computing Sky({m}) for everym ∈M and then
follows a level-wise strategy: from the lower level, each level of the
lattice is constructed by applying the derivation rules and, if needed,
the computing of the non derivable skypatterns (function complete).

3.3 Concise Representation of a Cube
Different subsets of measures may lead to a same set of skypatterns.
This observation can be used to provide a concise representation of
the cube without loss of information. We define an equivalence rela-
tion over subsets of measures having the same skypattern set:

Algorithm 1: Bottom-up approach for computing the cube
Input: M : a set of measures, T : a dataset.
Output: The skypattern cube of dataset T w.r.t. M .

1 cube← ∅;
2 foreach m ∈M do
3 cube← cube ∪{({m}, Sky({m}))};
4 for i← 2 to |M | do
5 foreach Mu ⊂M s.t. |Mu|= i do
6 cube← cube ∪ {(Mu, complete(derived(Mu)))};

7 return cube

Definition 7 (Equivalence between sets of measures) Let Mu and
Mv two sets of measures. Mu and Mv are said to be equivalent iff
Sky(Mu) = Sky(Mv).

Example 8 Equivalence classes on our running example are illus-
trated in Figure 1c. There are 8 classes: 4 have a cardinality of 1, 3
have a cardinality of 2 and 1 has a cardinality of 5.

Theorem 4 indicates if a new node built by the addition of a mea-
sure to a subset of measures Mu belongs or not to the equivalence
class of Mu. It means that equivalence classes can be easily deter-
mined thanks to the bottom-up construction of the skypattern cube.
In other words, when our approach is running to extract the skypat-
terns of the cube, it can also provide a concise representation of the
cube without supplementary work.

Theorem 4 (Equivalence class) Let Mu ⊆ M and m ∈
M\Mu. Sky(Mu∪{m})=Sky(Mu) iff (1) all indistinct skypat-
terns w.r.t. Mu are indistinct skypatterns w.r.t. Mu∪{m} and (2)
Sky(Mu∪{m})=derived(Mu∪{m}).

Proof (Double inclusion) All incomparable w.r.t. Mu are incom-
parable w.r.t. Mu ∪ {m} (Theorem 1). All indistinct w.r.t. Mu are
indistinct w.r.t. Mu ∪ {m} according to (1). Since incomparable
w.r.t. Mu and indistinct w.r.t. Mu form a partition of Sky(Mu),
Sky(Mu) ⊂ Sky(Mu ∪ {m}).
According to (2), Sky(Mu ∪ {m}) = derived(Mu ∪ {m}). As
derived skypatterns w.r.t.Mu∪{m} can only come from Sky(Mu),
Sky(Mu ∪ {m}) ⊂ Sky(Mu). �

4 Mining non-derivable Skypatterns using DCSP
This section describes how the non-derivable skypatterns can be
mined using Dynamic CSP [12]. The main idea of our approach [11],
taking benefit from cross-fertilization between CSP and data min-
ing [3, 4], is to improve the mining step during the process thanks
to constraints dynamically posted and stemming from the current set
of the candidate skypatterns. The process stops when the forbidden
area cannot be enlarged. Finally, the completeness of our approach is
insured by the completeness of the CP solver.

4.1 Mining Skypatterns
A Constraint Satisfaction Problem (CSP) P=(X ,D, C) is defined by
a set of variables X , a domainD, which maps every variable xi ∈ X
to a finite set of values D(xi), and a set of constraints C.

A Dynamic CSP [12] is a sequence P1, P2, ..., Pn of CSP, each
one resulting from some changes in the definition of the previous one.
These changes may affect every component in the problem defini-
tion: variables, domains and constraints. For our approach, changes

are only performed by adding new constraints. Solving such dynamic
CSP involves solving a single CSP with additional constraints posted
during search. Each time a new solution is found, new constraints are
imposed. Such constraints will survive backtracking and state that
next solutions should verify both the current set of constraints and
the added ones.

Constraints on the dominance relation are dynamically posted dur-
ing the mining process. Variable x will denote the (unknown) sky-
pattern we are looking for. Changes are only performed by adding
new constraints. So, we consider the sequence P1, P2, ..., Pn of CSP
where M is a set of measures, each Pi = ({x},LI , qi(x)) and:

• q1(x) = closedM (x)
• qi+1(x) = qi(x) ∧ φi(x) where si is the first solution to qi(x)

First, the constraint closedM (x) states that x must be a closed
pattern w.r.t M , it allows to reduce the number of redundant patterns
(see Section 2.1). Then, the constraint φi(x) ≡ ¬(si �M x) states
that the next solution (which is searched) will not be dominated by
si. Using a short induction proof, we can easily argue that query
qi+1(x) looks for a pattern x that will not be dominated by any of
the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is found, a new
constraint φi(x) is dynamically posted, leading to reduce the search
space. This process stops when the forbidden area cannot be further
extended (i.e. there exists n s.t. query qn+1(x) has no solution). For
skypatterns, φi(x) states that ¬(si �M x):
φi(x) ≡

(∨
m∈M m(si) < m(x)

)
∨
(∧

m∈M m(si) = m(x)
)

But, the n extracted patterns s1, s2, . . ., sn are not necessarily all
skypatterns. Some of them can only be ”intermediate” patterns sim-
ply used to enlarge the forbidden area. A post processing step must
be performed to filter all candidate patterns si that are not skypat-
terns, i.e. for which there exists sj (1 ≤ i < j ≤ n) s.t. sj dominates
si. So mining skypatterns is achieved in a two-steps approach:

1. Compute the set S = {s1, s2, . . . , sn} of candidates using Dy-
namic CSP.

2. Remove all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large, it remains
reasonably-sized in practice (see [11]).

4.2 Mining the non-derivable Skypatterns
In order to find the non-derivable skypatterns, we proceed in the
same way as Section 4.1, by stating that any non-derivable skypat-
tern could not de dominated by any derived skypattern.

LetMu ⊆M and derived(Mu) the subset of Sky(Mu) obtained
using the two derivation rules. Consider the sequence P1, P2, ..., Pn

of CSP where each Pi = ({x},LI , qi(x)) and:

• q1(x) = closedMu(x) ∧ΨMu(x)
• qi+1(x) = qi(x) ∧ ¬(si �Mu x) where si is the first solution to

query qi(x)
• ΨMu(x) states that x cannot be dominated w.r.t. Mu by any de-

rived skypattern:

ΨMu(x) =
∧

xi∈derived(Mu)

¬(xi �Mu x)

Example 9 Consider example 7. For Mu={m1,m3},
derived(Mu) = {B,E,BCDE}. So ΨMu(x) = ¬(B �Mu

x) ∧ ¬(E �Mu x) ∧ ¬(BCDE �Mu x). The associated Dynamic
CSP has a unique solution: x = BCD.

5 Related Work
Mining skypatterns is different from mining skylines [1]. Skyline
queries focus on the extraction of tuples of the dataset and assume
that all skylines are in the dataset. The skypattern mining task con-
sists in extracting patterns which are elements of the frontier defined
by the given measures. The skypattern problem is clearly harder be-
cause the search space for skypatterns is much larger than the search
space for skylines: O(2|I|) instead of O(|T |) for skylines.
Two methods have been designed for mining skypatterns.
Aetheris [10] takes benefit of theoretical relationships between
pattern condensed representations and skypatterns. Aetheris pro-
ceeds in two steps : first, condensed representations of the whole set
of patterns (i.e. closed patterns according to the considered set of
measures) are extracted; then, the sky operator (see Definition 2) is
applied. CP+SKY [11] mines skypatterns using Dynamic CSP (see
Section 4.1). Both methods have the same efficiency, but CP+SKY
also allows to mine soft skypatterns [11].
Computing the skyline cube efficiently. [7, 8, 13] proposed several
strategies to share skyline computation in different subspaces, but
they have to cope with the problem of enumerating skylines over all
possible subspaces. [6] proposed Stellar, which computes seed sky-
lines groups in the full space, then extend them to build the final set
of skyline groups and thus avoiding the computation of skylines in
all the subspaces. But Stellar does not take profit from any parent-
child relationships in the lattice. [9] is able to decrease the number
of domination tests by reducing the number of measure subspaces
that needs to be searched. However, its complex strategy makes im-
possible the success of the full use of the parent-child relationships.
Moreover, all of these techniques address skylines.

6 Experimental Evaluation
6.1 Skypattern Cubes for Mutagenicity Dataset
In this section, we report an experimental evaluation on a real-
life dataset of large size extracted from mutagenicity data [2] (a
major problem in risk assessment of chemicals). This dataset has
|T |=6, 512 transactions encoding chemicals and |I|=1, 073 items2

encoding frequent closed subgraphs previously extracted from T
with a 2% relative frequency threshold. Chemists use up to |M |=11
measures, five of them are typically used in contrast mining (fre-
quency and growth rate) and enable to express different kinds of
background knowledge. The other six measures are related to topo-
logical, geometrical and chemical properties of the chemicals.

|M | (2) (2)

2|M|−1
(4) (5) (4)

(5)
(7) Speed-up

1 1 1.00 338 338 1.00 1m:33s 1.00
2 2 0.87 680 753 0.90 14m:39s 1.19
3 5 0.75 1,036 1,280 0.80 28m:12s 1.70
4 9 0.64 1,421 1,983 0.71 48m:43s 2.40
5 16 0.53 1,865 2,982 0.62 1h:19m:30s 3.37
6 28 0.44 2,424 4,526 0.53 2h:04m:45s 4.73
7 45 0.36 3,200 7,146 0.45 3h:09m:35s 6.69
8 73 0.29 4,386 12,015 0.36 4h:40m:03s 9.57
9 117 0.23 6,327 21,773 0.23 6h:43m:07s 13.93

10 213 0.20 9,619 42,386 0.23 9h:26m:42s 20.62
11 401 0.20 15,261 87,374 0.17 12h:59m:36s 30.97

(2) # of equivalence classes (5)
∑

Mu⊆M

| Sky(Mu) |

(4) # of skypatterns for the concise representation (7) CPU-Time for CP+SKY+CUBE

Table 1: Space analysis (left part) and CPU-time analysis (right part).

Experimental protocol. The implementation of CP+SKY+CUBE
(bottom-up approach proposed in this paper) was carried out in
2 A chemical Ch contains an item A if Ch supports A, and A is a frequent

subgraph of T .

Figure 2: Comparing CPU-times for the 3 methods.

Gecode by extending the CP-based pattern extractor developed
by [4]. All experiments were conducted on a computer running Linux
with a core i3 processor at 2.13 GHz.
(a) CPU-time analysis. We compare CP+SKY+CUBEwith two other
methods for computing a skypattern cube:

1. Base-Line-Aetheris applies Aetheris to the 2|M|−1
non empty subsets of M .

2. Base-Line-CP+SKY applies CP+SKY to the 2|M|−1 non
empty subsets of M .

For the base-line methods, the CPU-time is the sum of CPU-times
required for each non-empty subset of M .

Fig. 2 compares the performance of the three methods accord-
ing to the number of measures |M |. The scale is logarithmic.
For each method and for |M |=k, the reported CPU-time is the
average of CPU-times over all

(
11
k

)
possible skypattern cubes.

Base-Line-Aetheris and Base-Line-CP+SKY have a sim-
ilar behavior since Aetheris and CP+SKY are equally effec-
tive (see Section 5). CP+SKY+CUBE clearly outperforms the two
base-line methods. For a small number of measures (2≤|M |≤4),
the speed-up is 1.75 (see column 8, Table 1). For |M |=8, there
is an order of magnitude (speed-up value 9.57). For |M |=11,
CP+SKY+CUBE requires about 13 hours to compute the skypattern
cube, while the two baseline methods spent about 403 hours (speed-
up value 31). Finally, if |M | is increased by one (a new measure is
added), the number of subsets to consider is doubled but we can see
that our speed-up is multiplied by about 1.5 (see column 8, Table 1).
(b) Space analysis. Column 1 (Table 1) corresponds to the number
of measures. Column 2 indicates the number of equivalence classes.
Column 3 denotes the ratio between the number of equivalent classes
and the total number of subsets of measure. Column 4 (resp. 5) re-
ports the total number of skypatterns for the concise (resp. usual)
representation (see Section 3.3) and Column 6 gives their ratio. For
|M |=k, reported values in columns (2), (4) and (5) represent the av-
erages over all

(
11
k

)
possible skypattern cubes. Our concise represen-

tation of the skypattern cube provides a substantial summarization
and compression of skypattern sets. For instance, for |M |=11, there
are 401 classes and a total number of 15, 261 skypatterns for the
concise representation. For the usual representation, there are 2, 047
subsets of measure and and a total number of 87, 374 skypatterns.
This leads to a substantial gain greater than 80%.
(c) Effectiveness of our derivation rules. In order to evaluate the
effectiveness of the two derivation rules (cf. Section 3.1), we mea-
sured the percentage of derived skypatterns (vs the total number of

Figure 3: Effectiveness of our derivation rules.

skypatterns) at each level of a cube. Reported values in Fig. 3 are
average values over all 11 possible cubes of 10 measures. For each
level i (2 ≤ i ≤ 10), the proportion of incomparable and indistinct
skypatterns is also depicted.

Our derivation rules are very efficient since they are able to de-
duce about 80 − 90% of the skypatterns, except for the first levels.
Moreover, when the number of measures increases, the number of
indistinct skypatterns decreases (in percentage), while the number
of incomparable skypatterns increases. Indeed, incomparable sky-
patterns of child nodes remain incomparable for a parent node (see
Theorem 1) whereas indistinct skypatterns may become any kind of
skypatterns or dominated patterns (see Corollary 1).

(d) Effectiveness of our sufficient condition. Theorem 3 gives
our sufficient condition stating if, for a subset of measures Mu,
derived(Mu) = Sky(Mu) without requiring any Dynamic CSP.
To asses the effectiveness of this condition, we measured the per-
centage of success at each level of a cube. Reported values in Ta-
ble 2 are average values over all 11 possible cubes of 10 measures.
Line 1 provides the level in the lattice. Line 2 indicates the number of
nodes where our condition applies, while Line 3 reports the number
of nodes where our condition should apply. Line 4 depicts their ratio
(percentage of success). The more the number of measures increases,
the more our sufficient condition becomes effective. From level 5 to
level 10, the percentage of success increases from 73% to 100%.

Level 2 3 4 5 6 7 8 9 10
of nodes
where Th 3
applies

6.55 54.55 127.91 183.27 171.82 106.91 42.55 9.82 1.00

of nodes
where Th 3
should apply

29.45 102.55 194.73 252.00 210.00 120.00 45.00 10.00 1.00

Succ. ratio:
(2)/(3)

0.22 0.53 0.66 0.73 0.82 0.89 0.95 0.98 1.00

Table 2: Effectiveness of our sufficient condition (Theorem 3).

6.2 Skypattern Cubes for UCI Datasets
Experiments were carried out on 14 various datasets from UCI3

benchmarks. We considered 5 measures M={freq, max, area,
mean, growth-rate}. Measures using numeric values, like mean,
were applied on attribute values that were randomly generated within
the range [0..1]. Table 3 summarizes the results we obtained.

(a) CPU-time analysis. Columns 2-4 compare the CPU-times of the
three methods. CP+SKY+CUBE clearly dominates the two base-line
methods. On half of the datasets, the speed-up is at least 10.43 (see
column 5).

3 http://www.ics.uci.edu/˜mlearn/MLRepository.html

CPU-Time Speed-Up
Dataset (2) (3) (4) (2)

(4)
(3)
(4)

(7)
austral 6m04s 4m15s 1m31s 3.98 2.79 0.82
cleve 1m53s 1m21s 21s 5.27 3.76 0.97
cmc 26s 2m23s 22s 1.20 6.41 0.90
crx 8m40s 5m37s 1m13s 7.12 4.61 0.89

german 2h34m18s 53m29s 14m03s 10.98 3.80 0.88
heart 1m46s 58s 19s 5.49 3.01 0.86

hepatic 6m12s 58s 19s 18.91 2.97 0.71
horse 10m34s 3m32s 58s 10.93 3.67 0.82
hypo 6h13m57s 51m46s 4m41s 79.75 11.04 0.79

lymph 4m32s 49s 11s 23.87 4.38 0.65
tic-tac-toe 1m10s 2m48s 41s 1.68 4.03 0.84

vehicle 34m01s 16m41s 2m55s 11.64 5.71 0.66
wine 1m00s 31s 13s 4.63 2.43 0.94
zoo 19s 8s 1s 10.43 4.82 0.87

(2) Base-line-Aetheris (4) CP+SKY+CUBE
(3) Base-line-CP+SKY (7) Succ. Ratio: |derived(Mu)|

|Sky(Mu)|

Table 3: Results on UCI datasets with |M |=5.

(b) Effectiveness of our derivation rules. Column 7 reports, for
each dataset, the percentage of derived skypatterns. Reported values
are the average values over levels i (2 ≤ i ≤ 5) of the cube. Our
derivation rules are able to deduce about 79−97% of the skypatterns,
except for two datasets (lymph and vehicle).

7 Conclusion
We have designed an efficient bottom-up method to compute sky-
pattern cubes. Our derivation rules are able to collect a large part
of the skypatterns of a parent node. Non-derivable skypatterns are
computed on the fly thanks to Dynamic CSP. The bottom-up strategy
makes easy the building of a concise representation of the cube ac-
cording to skypattern equivalence classes. Experiments show the ef-
fectiveness of our proposal. Navigation through the cube is a highly
promising perspective.
Acknowledgments. This work is partly supported by the ANR
(French Research National Agency) funded projects FiCoLoFo
ANR-10-BLA-0214 and Hybride ANR-11-BS002-002.

REFERENCES
[1] S. Börzsönyi, D. Kossmann, and K. Stocker, ‘The skyline operator’, in

ICDE, pp. 421–430, (2001).
[2] K. Hansen et al., ‘Benchmark data set for in silico prediction of ames

mutagenicity’, J. of Chem. Inf. and Model., 49(9), 2077–2081, (2009).
[3] T. Guns, S. Nijssen, and L. De Raedt, ‘Itemset mining: A constraint pro-

gramming perspective’, Artif. Intell., 175(12-13), 1951–1983, (2011).
[4] M. Khiari, P. Boizumault, and B. Crémilleux, ‘Constraint programming

for mining n-ary patterns’, in CP, LNCS 6308, pp. 552–567, (2010).
[5] H. Mannila and H. Toivonen, ‘Levelwise search and borders of theories

in knowledge discovery’, DAMI, 1(3), 241–258, (1997).
[6] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang, ‘Computing compressed mul-

tidimensional skyline cubes efficiently’, in ICDE, pp. 96–105, (2007).
[7] J. Pei, W. Jin, M. Ester, and Y. Tao, ‘Catching the best views of skyline:

A semantic approach based on decisive subspaces’, in VLDB, pp. 253–
264, (2005).

[8] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao,
J. X. Yu, and Q. Zhang, ‘Towards multidimensional subspace skyline
analysis’, ACM Trans. Database Syst., 31(4), 1335–1381, (2006).

[9] C. Raı̈ssi, J. Pei, and T. Kister, ‘Computing closed skycubes’, PVLDB,
3(1), 838–847, (2010).

[10] A. Soulet, C. Raı̈ssi, M. Plantevit, and B. Crémilleux, ‘Mining domi-
nant patterns in the sky’, in ICDM, pp. 655–664, (2011).

[11] W. Ugarte, P. Boizumault, S. Loudni, B. Crémilleux, and A. Lepailleur,
‘Mining (soft-) skypatterns using dynamic CSP’, in CPAIOR, LNCS
8451, pp. 71–87, (2014).

[12] G. Verfaillie and N. Jussien, ‘Constraint solving in uncertain and dy-
namic environments: A survey’, Constraints, 10(3), 253–281, (2005).

[13] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, ‘Efficient
computation of the skyline cube’, in VLDB, pp. 241–252, (2005).

