
Replicated Parallel Strategies for Decomposition
Guided VNS

Abdelkader Ouali a,b Samir Loudni b Lakhdar Loukil a

Patrice Boizumault b Yahia Lebbah a

a Université d’Oran, Laboratoire LITIO, 31000 Oran, Algeria.
b University of Caen, CNRS, UMR 6072 GREYC, 14032 Caen, France

Abstract

This paper presents two new parallel strategies for DGVNS (Decomposition Guided VNS)
which rely on master-slave architecture. The two strategies make use of slaves that per-
form a special case of intensified shaking and cooperate intensively by exchanging infor-
mation about the best solutions computed so far in synchronous and asynchronous ways.
Experiments performed on various instances of three real-life problems (RLFAP, SPOT5 and
tagSNP) show the appropriateness and the efficiency of our proposals.

1 Introduction

Parallel solving methods offer the possibility of speeding up computations and, as
such, these methods constitute an interesting field of research for combinatorial op-
timization community. Several parallel versions of many well-known metaheuristics
were proposed with varying degrees of parallelization [3,4].

In [7], we have proposed CPDGVNS (for Cooperative Parallel DGVNS), the first
parallelization strategy for Decomposition Guided VNS (DGVNS) [5] which exploits
the graph of clusters provided by a tree decomposition to parallelize the exploration
of all the clusters. It follows a master-slave architecture, where the slaves explore

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 47 (2015) 93–100

1571-0653/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2014.11.013

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2014.11.013
http://dx.doi.org/10.1016/j.endm.2014.11.013
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2014.11.013&domain=pdf

the individual clusters using DGVNS, while the master updates, and communicates
the best overall solution. However, the main limitation of this approach is that
slaves have to perform a number of iterations before sharing their best solutions
with the master. This makes the cooperation with the master less frequent, and
limits the diversification of the search space exploration by the slaves.

The contribution of this paper is to propose two new parallel strategies, called
Replicated Synchronous and Asynchronous DGVNS (RSDGVNS and RADGVNS) that
overcome the drawbacks of CPDGVNS. The two strategies rely on master-slave ar-
chitecture and make use of slaves that perform a special case of intensified shaking
(k randomly chosen variables of the solution are destroyed, and then re-built in
the best way), thus making the two methods more cooperative as compared to
CPDGVNS. Experiments performed on various instances of three real-life problems
(RLFAP, SPOT5 and tagSNP) show the appropriateness and the efficiency of the pro-
posed strategies.

2 Preliminaries
A Cost Function Network (CFN) is a pair (X,W) where X = {x1, . . . , xn} is a
set of n variables (with a maximum domain size d, i.e., d=maxi=1,...,n |Di|) and
W is a set of e cost functions. Each variable xi ∈ X has a finite domain Di of
values that can be assigned to it. A value a in Di is denoted (xi, a). For a set of
variables S ⊆ X, DS denotes the cartesian product of the domains of the variables
in S. A complete assignment t=(a1, ..., an) is an assignment of all variables. For
a given complete assignment t, t[S] denotes the projection of t over S. A cost
function wS ∈ W , with scope S ⊆ X, is a function wS : DS �→ [0, k�] where k�
is a maximum integer cost (finite or not) used to represent forbidden assignments
(expressing hard constraints). Costs are combined using the bounded addition
defined by α ⊕ β = min(k�, α + β). Solving a CFN consists in finding a complete
assignment t minimizing ⊕wS∈WwS(t[S]).

Definition 2.1 ([8]) Let G=(X ,E) be the constraints graph of a CFN with one
vertex for each variable and one edge (u, v) for every cost function wS ∈ W, such
that u, v ∈ S. A tree decomposition of G is a pair (CT , T) where T = (I, A) is a
tree with nodes set I and edges set A and CT = {Ci | i ∈ I} is a family of subsets
of X (called clusters) such that: (i) ∪i∈I Ci = X, (ii) ∀ (u, v) ∈ E, ∃ Ci ∈ CT s.t. u,
v ∈ Ci, (iii) ∀ i, j, k ∈ I, if j is on the path from i to k in T , then Ci∩Ck ⊆ Cj. The
intersection of two clusters Ci and Cj is called a separator, and noted sep(Ci, Cj).

Definition 2.2 A graph of clusters for a tree decomposition (CT , T) is an undi-
rected graph G = (CT , ET) that has a vertex for each cluster Ci ∈ CT , and there is
an edge (Ci, Cj) ∈ ET when sep(Ci, Cj) �= ∅.

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–10094

Require: VNS parameters (kinit), LDS pa-
rameter δmax, number of clusters ncl.

1: S ← genRandomSol()
2: k ← kinit, c ← 1
3: while (k < |X|)∧(not TimeOut) do
4: Cand ← CompleteCluster(Cc, k)
5: Xun ← Hneighborhood(Cand, k, S)
6: A ← S\{(xi, a) | xi ∈ Xun}
7: S′ ← LDS+CP(A, Xun, δmax, f(S), S)
8: neighborhoodChange(S, S′, k, c)
9: end while
10: return S

1: procedure neighborhoodChange(S,S′, k, c)
2: if f(S′) < f(S) then
3: S ← S′, k ← kinit
4: else
5: k ← k + 1
6: end if
7: c ← (c mod ncl) + 1
8: end procedure

Algorithm 1. Pseudo-code of DGVNS.

Decomposition Guided VNS. DGVNS [5] extends the VNS method [6], by exploit-
ing the graph of clusters in order to guide the exploration of large neighborhoods. At
each step (see Algorithm 1), it performs a special case of intensified shaking : selects
k variables to be unassigned in the current solution (line 6) and rebuild them by a
partial tree search (LDS) combined with Constraint Propagation (CP) (line 7). To
favor moves on regions that are closely linked, DGVNS uses neighborhood structures
Nk,c where k is the neighborhood dimension, c the index of the current cluster to
be considered, and Cc ∈ CT is the cluster containing the variables to be unassigned
(see [5] for more details). Let ncl be the total number of clusters, Nk,c the current
neighborhood structure and succ a successor function (succ(c) = (c mod ncl)+1).
Initially, k is set to kinit. If LDS+CP finds a solution of better quality, then k is reset
to kinit and the next cluster is considered. Otherwise, we look for improvements in
N(k+1),succ(c). The search stops when k reaches |X| = n or the T imeOut.

Cooperative Parallel DGVNS. CPDGVNS [7] is a straightforward parallel version of
DGVNS, where the clusters of the tree decomposition are explored in parallel by each
slave process. CPDGVNS follows a master-slave architecture and limits the number of
slaves to the number of available clusters. Roughly speaking, in CPDGVNS, each slave
runs DGVNS on a given cluster, while the master keeps, updates, and communicates
asynchronously the current overall best solution to slave processes.

3 Replicated Parallel Strategies for DGVNS

In CPDGVNS, the slaves run DGVNS algorithm making the communications with the
master less frequent. This greatly limits the diversification of the search space explo-
ration by the slaves since less diverse initial solutions are produced. To overcome this
drawback, we propose two new parallel strategies, called Replicated Synchronous
and Asynchronous DGVNS (RSDGVNS and RADGVNS), where the slaves perform a special
case of intensified shaking, thus enabling rapid production of intermediate solutions
to feed the information exchange among cooperating slaves. The two strategies
differ by the way their masters achieve communications with the slaves.

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–100 95

1: Master algorithm for RADGVNS:
2: S ← genRandomSol()
3: c ← 1
4: for each process p = 1, . . . , npr do
5: Prp.k ← kinit, Prp.cl ← c
6: Send(p, P rp, δmax, S)
7: c ← (c mod ncl) + 1
8: end for
9: F inished ← 0
10: while (F inished < npr) do
11: Receive(p, S′)
12: Neighbor-1(p, c, kinit, S′, S)
13: if (not TimeOut) then
14: Send(p, P rp, δmax, S)
15: elseF inished ← F inished+ 1
16: end if
17: end while
18: return S
1: procedure Neighbor-1(p, c, kinit, S

′, S)
2: if (f(S′) < f(S)) then
3: S ← S′, Prp.k ← kinit

4: else
5: if (Prp.k < |X|) then
6: Prp.k ← Prp.k + 1
7: end if
8: end if
9: Prp.cl ← c, c ← (c mod ncl) + 1

1: Master algorithm for RSDGVNS:
2: S ← genRandomSol()
3: S′ ← S, k ← kinit
4: c ← 1
5: while ((k < |X|)∧ (not TimeOut)) do
6: for each process p = 1, . . . , npr do
7: Prp.k ← k, Prp.cl ← c
8: Send(p, P rp, δmax, S)
9: c ← (c mod ncl) + 1
10: end for
11: F inished ← 0
12: while (F inished < npr) do
13: Receive(p, S”)
14: if (f(S”) < f(S′)) then
15: S′ ← S”
16: end if
17: F inished ← F inished+ 1
18: end while
19: Neighbor-2(k, kinit, S, S′)
20: end while
21: return S
1: procedure Neighbor-2(k, kinit, S, S

′)
2: if (f(S′) < f(S)) then
3: S ← S′, k ← kinit
4: else k ← k + 1
5: end if

Algorithm 2. Master algorithms for RSDGVNS and RADGVNS.

1: Slave algorithm:
2: Receive(0, P, δmax, S)
3: Cand ← CompleteCluster(P.cl, P.k)
4: Xun ← Hneighborhood(Cand, P.k, S)
5: A ← S\{(xi, a) | xi ∈ Xun}
6: S′ ← LDS+CP(A, Xun, δmax, f(S), S)
7: Send(0, S′)

Algorithm 3. Slave algorithm for RSDGVNS and RADGVNS.

Replicated Asynchronous DGVNS. In RADGVNS, solution updates and communica-
tions are performed asynchronously. Algorithm 2(left) shows the pseudo-code of the
master algorithm. Let Pr1..npr be the set of slaves. First, the master initiates the
search by launching in parallel the npr slaves (lines 4-8). This is done by sending to
each slave p the same initial solution S, the index c of the cluster to be processed,
and the initial number of variables to unassign kinit. Then, it waits for new solutions
found by each slave process (lines 10-17). Whenever a new solution S ′ is received, it
is compared to the best overall solution S. But contrary to CPDGVNS, in case of im-
provement, S is updated to S ′, k is reset to kinit and the next cluster is considered.
Otherwise, we look for improvements in N(k+1),succ(c) (see procedure Neighbor-1).
If the TimeOut is not reached, the search is continued by re-launching the slave
process p starting from the best available overall solution (line 14).

Replicated Synchronous DGVNS. As for RADGVNS, the master of RSDGVNS initiates
the search by launching in parallel the npr slaves (see Algorithm 2(right), lines 6-

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–10096

10). But contrary to RADGVNS, solution updates and communications are performed
synchronously: the master waits for all slaves to terminate their computations and,
then, selects the best solution S ′ (lines 12-18) and compares it to the best overall
solution S (see procedure Neighbor-2). The master proceeds with a new search
by relaunching the slaves on new clusters using the best overall solution.

Slaves Algorithm. The aim of the slave process is to intensify the search in the
vicinity of the solution sent by the master. Both RSDGVNS and RADGVNS perform the
same slave algorithm using only one iteration of DGVNS (see Algorithm 3). First,
a set of candidate variables Cand are selected from cluster P.cl where cl is the
index of the cth cluster (line 3). Second, a subset of k variables Xun (un stands
for uninstantiated) to be unassigned in the current solution is randomly selected
in Cand among conflicted ones (line 4). A partial assignment A is generated and
rebuilt using LDS+CP. Function Hneighborhood ensures that subsets Xun must
be different for all slaves.

4 Experiments

Benchmark Problems: Experiments have been performed on instances of three
different problems modeled as Cost Function Network (see Section 2).

RLFAP instances: The Radio Link Frequency Assignment Problem (RLFAP) consists
in assigning a limited number of frequencies to a set of radio links defined between
pairs of sites, in order to minimize interferences due to the re-use of frequencies [2].
We selected the most difficult instances: Scen07 and Scen08.

SPOT5 instances: The daily management of an earth observation satellite such
as SPOT5 consists in selecting a subset of candidate photographs to fit physical
limitations and maximize the importance of the selected photographs [1]. We report
experiments on three challenging instances.

tagSNP instances: The tagSNP problem consists in selecting a small subset of
SNPs (Single Nucleotide Polymorphism), called tagSNPs, that captures most of
the genetic information. This problem is known to be very hard to solve, due to its
close relation to the set covering problem (NP-Hard) [9]. We report experiments on
5 challenging large-sized instances derived from human chromosome-1-data 1 .

Experimental Protocol: We used the same parameter settings as those described
in [5]: kmin=4 and δmax=3. T imeOut was set to 3600 seconds.

A set of 50 runs per instance has been performed on the Infiniband Linux cluster
with 8 nodes, located at the High Performance Center of Cerist-Algiers in Algeria.

1 http://www.costfunction.org/benchmark

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–100 97

Instance Method Succ. Time Speed-up
Scen07,
n = 200,
d = 44,
e = 2, 665,
S∗ = 343, 592,
ncl = 19

DGVNS 49/50 224.02 -

CPDGVNS 50/50 118.34 1.89

RSDGVNS 50/50 195.99 1.14

RADGVNS 50/50 14.98 14.95
Scen08,
n = 458,
d = 44,
e = 5, 286,
S∗ = 262,
ncl = 46

DGVNS 15/50 2758.80 -

CPDGVNS 50/50 263.03 10.48

RSDGVNS 50/50 52.74 52.30

RADGVNS 50/50 8.63 319.67

#414,
n = 364, e =
10, 108,
S∗ = 38, 478,
ncl = 14

DGVNS 23/50 1967.35 -

CPDGVNS 50/50 44.75 43.96

RSDGVNS 49/50 101.06 19.46

RADGVNS 43/50 517.16 3.80

#505, n =
240, e = 2, 242,
S∗ = 21, 253,
ncl = 12

DGVNS 18/50 2304.92 -

CPDGVNS 50/50 54.99 41.91

RSDGVNS 49/50 73.80 31.23

RADGVNS 50/50 1.14 2,021.85

#509, n =
348, e = 8, 624,
S∗ = 36, 446,
ncl = 13

DGVNS 32/50 1320.78 -

CPDGVNS 50/50 40.05 32.97

RSDGVNS 50/50 18.77 70.36

RADGVNS 47/50 222.71 5.93

Instance Method Succ. Time Speed-up

#10442, n = 908,
d = 76,
e = 28, 554,
S∗ = 21, 591, 913,
ncl = 25

DGVNS 50/50 114.73 -

CPDGVNS 50/50 211.65 0.54

RSDGVNS 50/50 93.17 1.23

RADGVNS 50/50 33.05 3.47
#14226,
n = 1, 058,
d = 95,
e = 36, 801,
S∗ = 25, 665, 437,
ncl = 94

DGVNS 50/50 157.18 -

CPDGVNS 50/50 163.00 .96

RSDGVNS 50/50 116.71 1.34

RADGVNS 50/50 37.78 4.16
#17034,
n = 1, 142,
d = 123,
e = 47, 967,
S∗ = 38, 318, 224,
ncl = 139

DGVNS 50/50 315.19 -

CPDGVNS 50/50 242.19 1.30

RSDGVNS 50/50 273.34 1.15

RADGVNS 50/50 93.79 3.36

#9319, n = 562,
d = 58,e =
14, 811,
S∗ = 6, 477, 229,
ncl = 62

DGVNS 50/50 19.23 -

CPDGVNS 50/50 58.48 0.32

RSDGVNS 50/50 15.99 1.2

RADGVNS 50/50 9.1 2.11
#9150,
n = 1, 352,
d = 121,
e = 44, 217,
S∗ = 43, 301, 891,
ncl = 152

DGVNS 40/50 1961.07 -

CPDGVNS 50/50 420.10 4.66

RSDGVNS 50/50 750.54 2.61

RADGVNS 50/50 130.92 14.97

Table 1. Comparing the four methods on RLFAP, SPOT5 and tagSNP instances.

Scen07 Scen08 #414 #505 #509 #10442 #14226 #17034 #9319 #9150

CPDGVNS 7.91 30.50 -11.50 48.24 -5.55 6.40 4.31 2.58 6.42 3.21

RSDGVNS 13.14 6.11 -5.11 64.74 -11.86 2.82 3.10 2.92 1.75 5.73

Table 2. Speed-ups provided by RADGVNS against CPDGVNS and RSDGVNS.

Each node has a dual-CPU Xeon E5-2650 with 16 cores, 64 GB RAM, running at
2.00 GHz. All search strategies have been implemented in C++ using the library
toulbar2 2 . The parallelization has been done within MPI (Message Passing In-
terface) environment. All experiments have been performed on the same machine.
Four methods are compared: DGVNS, CPDGVNS, RADGVNS and RSDGVNS. Tree decom-
positions are built using the Maximum Cardinality Search (MCS) heuristic [10].

Comparing the four methods. Table 1 compares the performance of the four
methods. Column 1 gives the characteristics of each instance: its name, its number
of variables (n), its number of cost functions (e), its maximum domain size (d) and
the number of clusters of the cluster graph ncl. Columns (3−5) report respectively
the number of successful runs to reach the optimum, the average CPU time (in
seconds) for the 50 runs (for unsuccessful runs, the CPU time is set to T imeOut)
and the speed-up relative to the sequential version. For the parallel strategies, the
number of processes npr is set to ncl (see column 1). For instances with (ncl >
128), npr is set to 128 (i.e. maximum number of available processes). First,
RADGVNS clearly outperforms DGVNS on all instances. For Scen07, RADGVNS is on
average 14.95 times faster than DGVNS. For Scen08, RADGVNS provides a superlinear

2 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–10098

Instance
Time Speed-up

(1) (2) (3) (4) (1/2) (1/3) (1/4)

Scen07 167.89 37.61 14.98 18.69 4.46 11.20 8.98

Scen08 3170.70 72.34 8.63 10.76 43.83 367.40 294.67

#10442 153.73 33.79 33.05 32.98 4.54 4.65 4.66

#14226 174.21 39.21 37.78 37.20 4.44 4.61 4.68

#17034 375.82 94.54 93.79 93.79∗ 3.97 4.00 4.00∗

#9150 2011.55 144.19 130.92 130.92∗ 13.95 15.36 15.36∗

Table 3. Impact of the number of processes on the performance of RADGVNS. Values with
(*) correspond to cases where (ncl > 128) and npr equal to 128.

speed-up of 319.67 and improves significantly the success rate about 70% (from 30%
to 100%). For SPOT5 and tagSNP instances, the speed-ups remain very significant,
particularly on the two challenging instances #505 and #9150 (speed-up values
2, 021.85 and 14.97 respectively).

Table 2 shows the speed-up provided by RADGVNS against CPDGVNS and RSDGVNS.
Second, RADGVNS clearly dominates CPDGVNS as well as RSDGVNS on most of the in-
stances (except for #414 and #509). We can see that on average, RADGVNS provides
a speed-up of 19.20 and 4.58 on RLFAP and tagSNP instances respectively as com-
pared to CPDGVNS. When compared to RSDGVNS, the speed-up is on average about
9.61 and 3.26 on RLFAP and tagSNP instances respectively. Third, if we compare
RSDGVNS against CPDGVNS neither of the two approaches clearly dominates the other.
Indeed, RSDGVNS beats CPDGVNS on 5 instances (Scen08, #509, #10442, #14226 and
#9319), while CPDGVNS performs better on the five remaining instances. However,
on instances where RSDGVNS is the most performer, the gains in terms of CPU-time
are more significant as compared to instances where CPDGVNS is the better one.

Impact of the number of processes. To evaluate the impact of the number
of slave processes on the performance of RADGVNS, we report in Table 3 average
CPU-times and speed-ups obtained for different number of processes npr. Columns
(2-5) report CPU-times for npr equal to 2, ncl/2, ncl and 128 processes respectively.
We can see that npr = ncl appears sufficient to obtain best speed-ups (see column
7: (1/3)). Increasing the number of processors seems to not be beneficial since
the speed-up decreases slightly which is a confirmation of what happens in parallel
computation usually.

Synthesis. Experiments performed on various challenging instances of RLFAP and
tagSNP problems show that (i) RADGVNS clearly dominates DGVNS as well as CPDGVNS and
RSDGVNS, and (ii) RSDGVNS is very effective as compared to CPDGVNS (RSDGVNS beats
CPDGVNS on half of the instances considered, while CPDGVNS performs better on the
five remaining instances).

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–100 99

5 Conclusion

In this paper, we have proposed two new parallel strategies that perform a spe-
cial case of intensified shaking, thus making the two methods more cooperative as
compared to CPDGVNS. Experiments performed on various challenging instances of
three real-life problems (RLFAP, SPOT5 and tagSNP) show that RADGVNS is the most
performant startegy, while RSDGVNS is very effective as compared to CPDGVNS. We
are investigating the use of learning mechanisms to enrich the informations shared
among cooperating processes, and to exploit separators in a parallel scheme.

References

[1] Bensana, E., M. Lemâıtre and G. Verfaillie, Earth observation satellite management,
Constraints 4 (1999), pp. 293–299.

[2] Cabon, B., S. de Givry, L. Lobjois, T. Schiex and J. P. Warners, Radio link frequency
assignment., Constraints 4 (1999), pp. 79–89.

[3] Crainic, T. G., M. Gendreau, P. Hansen and N. Mladenovic, Cooperative parallel
variable neighborhood search for the p-median, Journal of Heuristics 10 (2004),
pp. 293–314.

[4] Crainic, T. G. and M. Toulouse, Parallel strategies for meta-heuristics, in: F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, International Series in
Operations Research & Management Science 57, Springer US, 2003 pp. 475–513.

[5] Fontaine, M., S. Loudni and P. Boizumault, Exploiting tree decomposition for guiding
neighborhoods exploration for VNS, RAIRO Operations Research 47 (2013), pp. 91–
123.

[6] Mladenovic, N. and P. Hansen, Variable neighborhood search, Computers And
Operations Research 24 (1997), pp. 1097–1100.
URL citeseer.ist.psu.edu/mladenovic97variable.html

[7] Ouali, A., S. Loudni, L. Loukil, P. Boizumault and Y. Lebbah, Cooperative parallel
decomposition guided VNS for solving weighted CSP, in: Hybrid Metaheuristics, LNCS
8457, Hamburg, Germany, 2014, pp. 100–114.

[8] Robertson, N. and P. D. Seymour, Graph minors. ii. algorithmic aspects of tree-width,
Journal of Algorithms 7 (1986), pp. 309–322.

[9] Sánchez, M., D. Allouche, S. de Givry and T. Schiex, Russian doll search with tree
decomposition, in: C. Boutilier, editor, IJCAI, 2009, pp. 603–608.

[10] Tarjan, R. E. and M. Yannakakis, Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM Journal on Computing 13 (1984), pp. 566–579.

A. Ouali et al. / Electronic Notes in Discrete Mathematics 47 (2015) 93–100100

citeseer.ist.psu.edu/mladenovic97variable.html

	Introduction
	Preliminaries
	Replicated Parallel Strategies for DGVNS
	Experiments
	Conclusion
	References

