
Computing Skypattern Cubes using Relaxation

Willy Ugarte∗ Patrice Boizumault∗, Samir Loudni∗ and Bruno Crémilleux∗
∗GREYC Laboratory (CNRS UMR 6072)

Université de Caen Basse-Normandie, 14032 CAEN, FRANCE
{firstname.lastname}@unicaen.fr

Abstract—We propose an effective method to compute the
skypattern cubes thanks to a relaxation strategy in the pattern
mining process. Our approach is based on the fact that each
node of the cube can be approximated by the set of edge-
skypatterns (a relaxed form of skypatterns) w.r.t. the whole set
of measures M . Then we transform the problem into a skyline
cube mining in |M | dimensions. The set of edge-skypatterns can
be efficiently mined by using either a dynamic CSP method or
an extended version of a static method based on the theoretical
relationships between patterns and condensed representations
of skypatterns. Experiments conducted on UCI datasets and
on a real-life dataset (Mutagenicity) show the relevance
and performance of our approach.

Keywords-Skypattern Cube, Soft Skypattern, Dynamic CSP.

I. INTRODUCTION

The notion of skyline queries [1] has been recently
integrated into the pattern discovery paradigm to mine
skyline patterns (henceforth called skypatterns) [2], [3]. Such
queries have attracted considerable attention due to their
importance in multi-criteria decision and are usually called
“Pareto efficiency or optimality queries”. Briefly, given a
set of measures, skypatterns are patterns based on a Pareto-
dominance relation for which no measure can be improved
without degrading the others. As an example, a user selecting
a set of patterns may prefer a pattern with a high frequency,
large length and a high confidence. In this case, a pattern
xi dominates another pattern xj if freq(xj) ≥ freq(xi),
size(xj) ≥ size(xi), confidence(xj) ≥ confidence(xi)
where at least one strict inequality holds. Given a set of
patterns, the skypattern set contains the patterns that are
not dominated by any other pattern. Skypatterns are highly
interesting because they do not require any threshold on the
measures and the dominance relation gives a global interest
with semantics easily understood by the user.

Up to now, skypatterns are computed according to a fixed
number of measures. In practice, users do not know the
exact role of each measure and it is difficult to beforehand
select the most appropriate set of measures. Ideally, users
would like to keep all the measures potentially useful, look
what happens on a skypattern set by removing or adding
a measure to evaluate the impact of measures and then
converge to a proper skypattern set. Similarly to the notion
of the skyline cube in the database [4], users would like
to have available on line the skypattern cube. Each element

of the cube is a node which associates to a subset of the
measures its skypattern set. By comparing two neighboring
nodes, which are differentiated by adding or removing one
measure, users can observe the new skypatterns and the
ones which die out. It greatly helps to better understand
the role of the measures. Moreover, users can spot that
different subsets of measures have the same skypattern set:
such an equivalence class over subsets of measures shows
useless measures (i.e., measures that can be added to a set of
measures without changing the skypattern set). To sum up,
the cube is the proper structure to enable various user queries
in an efficient manner and to discover the most interesting
skypattern sets. Therefore the problem of efficient computing
of the skypattern cube is the focus of this paper.

More formally, given a set M of n measures, the skypat-
tern cube has 2n−1 possible non-empty skypattern subsets.
All these subsets should be precomputed to efficiently handle
various queries of users. An obvious and naive method needs
the computing of the 2n−1 skypattern sets leading to a
prohibitive cost.

Very recently, [5] has designed the first (and unique)
approach to compute skypattern cubes. The key idea of this
bottom-up approach is to automatically collect on a parent
node the skypatterns which can be derived from its child
nodes (if k measures are associated to a parent node, its
child nodes are the nodes defined by the

(
k

k−1
)

subsets
of (k−1) measures). Other skypatterns are computed on
the fly. Independently, soft skypatterns have been recently
introduced by [3]. As the skypatterns suffer from the strin-
gent aspect of the constraint-based pattern framework, soft
skypatterns enable to capture valuable patterns occurring
in the dominated area. [3] has proposed two kinds of soft
skypatterns: the edge-skypatterns that belong to the Pareto
frontier (while skypatterns are vertices of this frontier), and
the δ-skypatterns that are close to the boundary.

This paper revisits in depth the skypattern cube problem
by proposing a new and effective method to compute the
skypattern cubes thanks to a relaxation strategy in the pattern
mining process. Our approach consists first in demonstrating
that every node of the cube is included in the set of
the edge-skypatterns w.r.t. the whole set of measures M .
Then we transform the problem into a skyline cube mining
problem (in |M | dimensions) for which several extractors
have been already developed [4], [6]. We use two alternative

methods for efficiently mining the set of soft skypatterns: a
dynamic CSP (Constraint Satisfaction Problem) method [3]
and an extension of a static method based on the theoretical
relationships between pattern and condensed representations
of skypatterns [2]). Experiments conducted on UCI datasets
and on a real-life dataset (Mutagenicity) show that our
relaxation based approach clearly outperforms the bottom-
up approach [5], and that the approximation we performed
is of very good quality.

The paper is organized as follows. Section II defines
the (soft) skypatterns and describes the bottom-up method
used to compute the skypattern cubes. Section III provides
an overview on skyline cubes. Section IV presents our
contribution and Section V is devoted to experimentations.

II. CONTEXT AND DEFINITIONS

A. Context

Let I be a set of distinct literals called items. An itemset
(or pattern) is a non-null subset of I. The language of
itemsets corresponds to LI = 2I\∅. A transactional dataset
T is a multiset of patterns of LI . Each pattern (or trans-
action) is a database entry. Fig. 1a presents a transactional
dataset T where each transaction ti gathers articles described
by items denoted A,. . . ,F . The traditional example is a
supermarket database in which each transaction corresponds
to a customer and every item in the transaction to a product
bought by the customer. An attribute (price) is associated to
each product (see Fig. 1a).

Constraint-based pattern mining aims at extracting all
patterns x of LI satisfying a query q(x) (conjunction of
constraints) which is usually called theory [7]: Th(q) =
{x ∈ LI | q(x) is true}. A common example is the fre-
quency measure leading to the minimal frequency constraint
(freq(x) ≥ θ). The latter provides patterns x having a
number of occurrences in the dataset exceeding a given
minimal threshold θ. There are other usual measures for a
pattern x:
• size(x) is the number of items that pattern x contains.
• area(x) = freq(x)× size(x).
• min(x.att) (resp. max(x.att)) is the smallest (resp.

highest) value of the item values of x for attribute att.
• mean(x) = (min(x.att)+max(x.att))

2 .
In many applications, it is highly appropriated to look for

contrasts between subsets of transactions The growth-rate
is a well-used contrast measure highlighting patterns whose
frequency increases significantly from one subset to another
(See Section V-B).

Definition 1 (Growth-rate). Let T be a database partitioned
into two subsets D1 and D2. The growth-rate of a pattern
x from D2 to D1 is:

mgr(x) =
|D2| × freq(x,D1)

|D1| × freq(x,D2)

The collection of patterns contains redundancy w.r.t. mea-
sures. Given a measure m, two patterns xi and xj are said to
be equivalent if m(xi) = m(xj). A set of equivalent patterns
forms an equivalence class w.r.t. m. The largest element (i.e.
the one with the highest number of items) of an equivalence
class is called a closed pattern. The set of closed patterns is
a compact representation of the patterns (i.e we can derive
all the patterns with their exact value for m from the closed
ones). This definition is straightforwardly extended to a set
of measures M .

B. Skypatterns

Skypatterns have been recently introduced by [2]. Such
patterns enable to express a user-preference point of view
w.r.t. a dominance relation. Let M be a set of measures.

Definition 2 (Pareto Dominance). A pattern xi dominates
another pattern xj w.r.t. M (denoted by xi �M xj), iff
∀m ∈M,m(xi) ≥ m(xj) and ∃m ∈M,m(xi) > m(xj).

Definition 3 (Skypattern operator). A skypattern w.r.t. M is
a pattern not dominated w.r.t. M . The skypattern operator
Sky(M) returns all the skypatterns w.r.t. M :

Sky(M) = {xi ∈ LI | 6 ∃xj ∈ LI , xj �M xi}

Example 1. C, D and CD, are skypatterns w.r.t. M={m1,
m2} since they are not dominated by any other pattern.
BCE in not a skypattern w.r.t. M since CD �M CDE.

Two patterns xi and xj are indistinct w.r.t. M (denoted by
xi =M xj) iff ∀m ∈ M,m(xi) = m(xj). Two patterns xi
and xj are incomparable w.r.t. M (denoted by xi ≺�M xj)
iff (xi 6�M xj) and (xj 6�M xi) and (xi 6=M xj).

Definition 4 (Incomparable skypattern). A pattern x ∈
Sky(M) is incomparable w.r.t M iff ∀xi ∈ Sky(M) s.t.
xi 6= x, xi ≺�M x.

Example 2. Pattern CD is an incomparable skypattern w.r.t.
M={m1, m2}.

Definition 5 (Indistinct skypattern). A pattern x ∈ Sky(M)
is indistinct w.r.t. M iff ∃xi 6= x ∈ Sky(M) s.t. (xi =M x).

It is easy to see that incomparable skypatterns and in-
distinct ones w.r.t. M constitute a partition of Sky(M).
Moreover, =M is an equivalence relation (i.e., the relation
is reflexive, symmetric and transitive). So, indistinct skypat-
terns can be gathered into a group.

Definition 6 (Indistinct Skypattern Group (ISG)). S ⊆
Sky(M) is an indistinct skypattern group w.r.t. M , iff (i)
|S| ≥ 2, (ii) ∀xi,xj∈ S, (xi =M xj) and (iii) ∀xi ∈ S,
∀xj ∈ Sky(M) \ S, (xi ≺�M xj).

Example 3. {C, D} is an ISG w.r.t. M={m1, m2} since
both C and D are skypatterns w.r.t. M and m1(C) =
m1(D) and m2(C) = m2(D).

Trans. Items
t1 c1 B C E F
t2 c1 B C D E
t3 c1 C D
t4 c1 C D F
t5 c2 A D F
t6 c2 A B C D E F
t7 c2 A C D F

Item A B C D E F
Price 10 20 70 40 50 60

(a) Transactional dataset T .

Subset of M Skypattern set
{m1, m2, m3, m4} {BCE, C, CD,

CF}
{m1, m2, m3} {C, CD, CF}
{m1, m2, m4} {BCE, C, CD}
{m1, m3, m4} {C}
{m2, m3, m4} {BCE, C, CD,

CF}
{m1, m2} {C, CD, D}
{m1, m3} {C}
{m1, m4} {C}
{m2, m3} {C, CD, CF}
{m2, m4} {BCE, CD}
{m3, m4} {C}
{m1} {C, D}
{m2} {CD}
{m3} {C}
{m4} {B, BE, BCE, C,

CE, E}
(b) Skypattern cube for M .

Pattern m1 m2 m3 m4

B 3 3 20 1.500
BCE 3 9 44 1.500
BE 3 6 35 1.500
C 6 6 70 1.500
CD 5 10 55 1.125
CDE 2 6 55 0.750
CDF 3 9 55 0.375
CE 3 6 60 1.500
CEF 2 6 60 0.750
CF 4 8 64 0.750
D 6 6 40 0.750
E 3 3 50 1.500

(c) Edge-skypatterns for M .

FIGURE 1: M={m1 : freq,m2 : area,m3 : mean,m4 : growth-rate}.

Two methods have been proposed for mining skypatterns:
- Aetheris [2] takes benefit of theoretical relationships
between pattern condensed representations and skypatterns.
Aetheris proceeds in two steps : first, condensed repre-
sentations of the whole set of patterns (i.e. closed patterns
according to the considered set of measures) are extracted;
then, the sky operator (see Definition 3) is applied.
- CP+SKY [3] mines skypatterns using Dynamic CSP (see
Section IV-B2). Finally, experiments performed by [3] show
that both methods are equally effective.

C. Edge-skypatterns

Soft skypatterns have been recently introduced by [3].
As the skypatterns suffer from the stringent aspect of the
constraint-based pattern framework, soft skypatterns enable
to capture valuable patterns occurring in the dominated area.
[3] has proposed two kinds of soft skypatterns: the edge-
skypatterns that belongs to the edge of the dominance area
and the δ-skypatterns that are close to this edge.

The key idea is to strengthen the dominance relation
in order to soften the notion of non dominated patterns.
Edge-skypatterns are also defined according to a dominance
relation and a Sky operator. Let M be a set of measures.

Definition 7 (Strict Dominance). A pattern xi strictly dom-
inates a pattern xj w.r.t M (denoted by xi �M xj), iff
∀m ∈M , m(xi) > m(xj).

Definition 8 (Edge operator). An edge-skypattern w.r.t. M
is a pattern not strictly dominated w.r.t. M . The operator
Edge-Sky(M) returns all the edge-skypatterns w.r.t. M :

Edge-Sky(M) = {xi ∈ LI | 6 ∃xj ∈ LI , xj �M xi}

Edge-skypatterns belong to the Pareto frontier while sky-
patterns are vertices of this frontier: every skypattern is an
edge-skypattern.

Theorem 1. Sky(M) ⊆ Edge-Sky(M).

Proof: let xi, xj ∈ LI , if xi �M xj then xi �M xj .
So, Sky(M) ⊆ Edge-Sky(M).

Example 4. Patterns C, CD and CF are (incompara-
ble) skypatterns w.r.t. M={m2,m3}. Edge-Sky(M) =
{C,CD,CF,CDF} since pattern CDF is also an edge-
skypattern (CDF is not strictly dominated w.r.t. M by any
other pattern).

D. Skypattern cube

The skypattern cube over a set of measures M consists in
all the 2|M |−1 skypattern sets Sky(Mu) for any non-empty
subset Mu ⊆M .

Definition 9 (Skypattern Cube). Let M be a set of measures.

SkyCube(M) = {(Mu, Sky(Mu)) |Mu ⊆M,Mu 6= ∅}

As different subsets of measures may lead to a same
skypattern set, a concise representation of the cube can
be provided, without loss of information, by defining an
equivalence relation over subsets of measures having the
same skypattern set:

Definition 10 (Equivalence between sets of measures). Let
Mu and Mv two sets of measures. Mu and Mv are said to
be equivalent iff Sky(Mu) = Sky(Mv).

Example 5. Fig. 1b depicts the skypattern cube w.r.t. M
by associating, to each of the 24−1 nodes, its skypattern

set. There are 9 classes of equivalence for the concise
representation. {m3}, {m1,m3}, {m1,m4}, {m3,m4} and
{m1,m3,m4} belong to the same class of equivalence since
they all have the same skypattern set, i.e. {C}. However, the
class of equivalence for {m1,m2,m4} is a singleton.

E. Computing skypattern cubes

The first (and unique) approach to compute skypattern
cubes has been proposed by [5]. CP+SKY+CUBE is a
bottom-up approach that relies on two derivation rules
collecting skypatterns of a parent node from its child nodes
without any dominance test.

Two theorems (see [5] for their proof) define the deriva-
tion rules that enable to derive a subset of skypatterns of
a parent node. Theorem 2 states that all the incomparable
skypatterns of a child node remain incomparable skypatterns
in its parent nodes. Theorem 3 exhibits the indistinct sky-
patterns of a child node that remain skypatterns in its parent
nodes. Moreover, if a skypattern in a parent node is also a
skypattern in at least one of its child nodes, then it will be
necessary collected by one of these rules.

Theorem 2 (Incomparability Rule). Let Mu ⊆ M . If x is
an incomparable skypattern w.r.t. Mu then ∀m ∈M \Mu,
x ∈ Sky(Mu ∪ {m}). Moreover x is incomparable w.r.t.
Mu ∪ {m}.

Theorem 3 (ISG Rule). Let Mu ⊆M and S an ISG w.r.t.
Mu. ∀m ∈ M \ Mu, each skypattern x ∈ S such that
m(x) = max

xi∈S
{m(xi)} is a skypattern w.r.t. Mu ∪ {m}.

Non-derivable skypatterns are computed on the fly thanks
to Dynamic CSP. The bottom-up principle enables to provide
a concise representation of the cube based on skypattern
equivalence classes without any supplementary effort.

III. RELATED WORK

Mining skypatterns is far different from mining skylines.
Skyline queries focus on the extraction of tuples of the
dataset and assume that all skylines belong to the dataset [1].
The skypattern mining task consists in extracting patterns
which are elements of the frontier defined by the given
measures [2], [3], [8], [12]. The skypattern problem is clearly
harder because the search space for skypatterns (O(2|I|)) is
much larger than the search space for skylines (O(|T |)).
Computing Skyline Cubes. Several strategies to share sky-
line computation in different nodes have been proposed: [9],
[10] but they have to cope with the problem of enumerating
skylines over all possible nodes. In [6], [11], skyline groups
have been introduced as an alternative to skycube structure.
This can be shown as a way to identify the semantics
of skyline points. Recently, Orion [4] optimized skyline
group computation using skyline derivation rules and closure
operators between subspace skylines. Finally, a group-by
skyline cube [13] was introduced as an interesting extension

of the skycube by combining group-by operation. All of
these techniques address only skylines.

IV. COMPUTING SKYPATTERN CUBES BY RELAXATION

This section presents a new method to compute skypattern
cubes thanks to a relaxation strategy in the pattern mining
process. Our approach is based on the fact that each node of
the cube can be approximated by Edge-Sky(M), the set of
edge-skypatterns w.r.t. the whole set of measures M . Then
we convert the problem into a skyline cube mining in |M |
dimensions to process it more efficiently.

Section IV-A provides the ”why and how” of our
approximation-based approach. Section IV-B describes how
Edge-Sky(M) can be efficiently mined by using either a
dynamic CSP method or an extended version of Aetheris.
Finally, Section IV-C shows how the computation of the
skypattern cube (according to M) can then be converted to
the computation of a skyline cube (in |M | dimensions).

A. Approximating each node by Edge-Sky(M)

On one side, [5] has proposed a bottom-up approach that
relies on two derivation rules collecting the skypatterns of
a parent node from its child nodes without any dominance
test (see Section II-E). The first derivation rule deals with
incomparable skypatterns (see Theorem 2) while the second
one is devoted to indistinct skypatterns (see Theorem 3).
On the other side, [3] has introduced edge-skypatterns (see
Section II-C). Although these notions have been separately
introduced, they are closely linked as shown below.

1) Key idea: Contrary to the Sky operator, the Edge-Sky
operator is monotonic (see Theorem 5). As a consequence,
each node of the cube is included in Edge-Sky(M) (see
Theorem 6). This is the greatest outcome of the paper: the
unique set Edge-Sky(M) is a superset of all the nodes of
the skypattern cube w.r.t. M .

Example 6. The various elements of Edge-Sky(M) are
reported in Column 1 of Fig. 1c. Edge-Sky(M) is a
superset of each skypattern set of the cube (see Fig. 1b).

2) Progression: Let Mu ⊆ M and m ∈ M\Mu, Theo-
rem 4 exhibits a particular kind of patterns, namely patterns
that are skypatterns for a child node but are not skypatterns
for a father node. But, as they are edge-skypatterns for
the child node (see Theorem 1), there will also be edge-
skypatterns for the father node. Theorem 5 proves that the
Edge-Sky operator is monotonic, and Theorem 6 provides
the final result.

Theorem 4. Let Mu ⊆ M , m ∈ M\Mu, and S an ISG
w.r.t. Mu. Let S′ = {x ∈ S | m(x) = max

xi∈S
{m(xi)}.

If S′ is a singleton then the unique skypattern is incompa-
rable w.r.t. Mu ∪ {m} else S′ is an ISG w.r.t. Mu ∪ {m}.
Finally all x ∈ S \ S′ are not skypatterns for Mu ∪ {m}.

Proof: If the maximum is unique, then the pattern is
incomparable w.r.t. Mu ∪ {m}. If not, all these patterns are
indistinct w.r.t. Mu∪{m} since they all have the same value
for m and for every m′ ∈Mu (see Theorem 3). Finally, let
x ∈ S \ S′. x cannot be a skypattern w.r.t. Mu ∪ {m} since
every x′ ∈ S′ dominates x because m(x′) > m(x) and
∀m′ ∈Mu,m

′(x′) = m′(x).

Theorem 5 (monotonicity of Edge-Sky). Let M be a set
of measures, and Mu ⊆ M . Then ∀m ∈ M \Mu, Edge-
Sky(Mu) ⊆ Edge-Sky(Mu ∪ {m}).

By contradiction: Let x ∈ Edge-Sky(Mu) and assume
that x 6∈ Edge-Sky(Mu∪{m}). So, ∃y s.t. y �Mu∪{m} x.
We deduce: (1) ∀mi ∈Mu,mi(y) > mi(x) and (2) m(y) >
m(x). (1) contradicts that x ∈ Edge-Sky(Mu).

Theorem 6 (Fundamental Result). Let M be a set of
measures. ∀Mu ⊆M , Sky(Mu) ⊆ Edge-Sky(M).

Proof: Sky(Mu) ⊆ Edge-Sky(Mu) (see Theorem 1).
Using Theorem 5, Edge-Sky(Mu) ⊆ Edge-Sky(M). So,
∀Mu ⊆M,Sky(Mu) ⊆ Edge-Sky(M).

B. Computing Edge-Sky(M)

1) Using Edge-Aetheris: We have built an extension
of Aetheris in order to compute edge-skypatterns. Like
Aetheris (see Section II-B), Edge-Aetheris proceeds
in two steps: first, the pattern condensed representation made
of the whole set of closed patterns are extracted; then, the
Edge-Sky operator (see Definition 8) is applied. The first
step is the same as for Aetheris, while the second one
has been performed by implementing the strict dominance
relation as well as the Edge-Sky operator.

2) Using Dynamic CSP [3]: The main idea is to improve
the mining step during the process thanks to constraints
dynamically posted and stemming from the current set of
the candidate skypatterns. This process stops when the
dominated area cannot be enlarged. The completeness of our
approach is insured by the completeness of the CSP solver.

A Dynamic CSP [14] is a sequence P1, P2, ..., Pn of
CSP, each one resulting from some changes in the definition
of the previous one. Each time a new solution is found,
new constraints are added. Such constraints will survive
backtracking and state that next solutions should verify both
the current set of constraints and the added ones.

Variable x will denote the (unknown) skypattern we are
looking for. Consider the sequence P1, P2, ..., Pn of CSP
where each Pi=({x},LI , qi(x)) and:
• q1(x) = closedM (x)
• qi+1(x) = qi(x) ∧ ¬ (si �M x) where si is the first

solution to query qi(x)
First, the constraint closedM (x) states that x must be a

closed pattern, it allows to reduce the number of redundant
patterns (see Section II-A). Then, the added constraint
¬ (si �M x) states that the next solution (which is

searched) will not be strictly dominated by si (see Defi-
nition 7).

Each time the first solution si to query qi(x) is found, a
new constraint ¬ (si �M x) ≡ ∨m∈M m(si) ≤ m(x) is
dynamically posted leading to reduce the search space. This
process stops when the dominated area cannot be enlarged
(i.e. there exits n s.t. query qn+1(x) has no solution).

C. Computing the skypattern cube

1) From one cube to another: This section shows how
the problem of computing a skypattern cube w.r.t. a set of
measures M can be converted into an equivalent problem of
computing a skyline cube in |M | dimensions.

Let M be a set of measures and k=|M |. Let f be a
mapping from LI to IRk that associates, to each pattern
p ∈ LI , a data point f(p) ∈ IRk with coordinates
(m1(p),m2(p), . . . ,mk(p)). Let P = {f(p) | p ∈ LI}.
P is a multiset: let pi and pj s.t. pi 6= pj . If pi and pj are
indistinct w.r.t. M then f(pi) = f(pj).

Example 7. Fig. 1c reports the mapping between Edge-
Sky(M) and data points of IR4 (|M | = 4). f(B) (resp.
f(BCE)) is the data point with coordinates (3, 3, 20, 1.500)
(resp. (3, 9, 44, 1.500)).

Let Mu ⊆ M and Skyline(Mu) be the set of skyline
points (of P) w.r.t. Mu. Then we have the following prop-
erty, whose proof is immediate reasoning by contradiction:

Theorem 7. Let M be a set of measures. ∀Mu ⊆ M,
Sky(Mu) = {p ∈ LI | f(p) ∈ Skyline(Mu)}.

Consequently, the equivalence classes for skypatterns (i.e
p) can be deduced from the equivalence classes for skylines
(i.e f(p)) directly to obtain a concise representation of the
skypattern cube.

Example 8. Let Mu={m2,m3}. Using the skyline
extractor and the mapping f , we obtain Skyline(Mu) =
{(6, 6, 70, 1.500), (5, 10, 55, 1.125), (4, 8, 64, 0.750)}. We
can deduce that Sky(Mu) = {C,CD,CF} using the
mapping f (see Fig. 1c).

2) Practical use: Applying a skyline extractor to f(LI)
would constitute a naive approach since f(LI) contains
2|I| points. Let E be a superset of all the skypatterns.
Then applying a skyline cube computation method on f(E)
ensures to provide the skypattern cube (see Theorem 7). We
use E = Edge-Sky(M) which is in practice a good superset
of all the skypatterns (see Section V-B). Indeed, edge-
skypatterns belong to the Pareto frontier while skypatterns
are vertices of this frontier. Another way should consider the
closed patterns but their number is too large (cf. Section V).

V. EXPERIMENTS

This section wants to assess two points: the CPU times
and the quality of our approximation using Edge-Sky(M).

Experiments were conducted on 2 types of datasets: a real-
life dataset Mutagenicity (see Section V-B) and several
UCI datasets (see Section V-C). Experiments show that our
relaxation based approach clearly outperforms the bottom-
up approach CP+SKY+CUBE [5], and that the approximation
we performed is of very good quality.

A. Experimental protocol

We used MICMAC [15] to mine closed patterns, and
Orion1 [4] to compute skyline cubes, since Orion is
one of the most efficient skyline extractor and provides the
concise representation of a skyline cube.

1) CPU-time analysis: let M be a set of measures. We
compare six methods:
• two base-line methods:

– Base-Line-Aetheris applies Aetheris to
each non empty subset of M ,

– Base-Line-CP+SKY applies CP+SKY to each
non empty subset of M ,

• the bottom-up approach: CP+SKY+CUBE (see Sec-
tion II-E).

• three approximation based methods:
– MICMAC+Orion mines the closed patterns using
MICMAC and then applies Orion,

– Edge-Aetheris+Orion computes Edge-
Sky(M) using Edge-Aetheris and then
applies Orion (see Section IV-B1),

– CP+Edge-SKY+Orion computes Edge-
Sky(M) using CP+Edge-SKY and then applies
Orion (See Section IV-B2).

For the two base-line methods, reported CPU-time is
the sum of CPU-times required for each non-empty subset
of M . For the three approximation-based ones, reported
CPU-time is the sum of CPU-times of the two steps: first,
computing the approximation (either closed patterns or edge-
skypatterns), and then computing the cube using Orion.

All experiments were conducted on a computer running
Linux with a core i3 processor at 2.13 GHz.

2) Effectiveness of the approximation: we consider, for a
set of measures M :
- the number of (distincts) skypatterns of the cube:

nCube(M) =| ∪Mu⊆M,Mu 6=∅ Sky(Mu) |,
- the number of closed pattern w.r.t. M : nClosed(M),
- the number of edge-skypatterns w.r.t. M :

nEdge(M) =|Edge-Sky(M)|.
To evaluate the effectiveness of our approximation, we

determine the ”extra” mined patterns by the selected ap-
proach. For MICMAC+Orion the ”extra” are quantified by
the proportion of closed patterns that are not skypatterns (for
any node of the cube). For Edge-Aetheris+Orion and
CP+Edge-SKY+Orion, the ”extra” are quantified by the

1https://github.com/leander256/Orion

proportion of edge-skypatterns that are not skypatterns (for
any node of the cube).

B. Skypattern cubes for Mutagenicity dataset

This section reports an experimental evaluation on a real-
life dataset of large size extracted from mutagenicity data
[16] (a major problem in risk assessment of chemicals).
This dataset has |T |=6, 512 transactions encoding chemicals
and |I|=1, 073 items2 encoding frequent closed subgraphs
previously extracted from T with a 2% relative frequency
threshold. Chemists use up to |M |=11 measures, five of
them are typically used in contrast mining (frequency and
growth-rate) and enable to express different kinds of back-
ground knowledge. The other six measures are related to
topological, geometrical and chemical properties.

1) CPU-time analysis: Fig. 2 compares the CPU-times of
the six methods according to the number of measures. The y-
scale is logarithmic. Table I further explores the CPU-times.
For each method, and for |M |=k, the reported CPU-time is
the average of CPU-times over all

(
11
k

)
possible skypattern

cubes.
The two base-line methods have a similar behavior since

Aetheris and CP+SKY are equally effective (see Sec-
tion II-B). As expected, base-line methods are very far from
the other four methods.

The method based on the approximation by the closed pat-
terns (MICMAC+Orion) is of very average quality. Indeed,
approximating by closed patterns is too coarse compared
with approximating by edge-patterns, and generates a huge
number of data points (see Section V-B2).

The two methods based on the approximation by Edge-
Sky(M) are equally effective and clearly outperform the
bottom-up approach CP+SKY+CUBE. Moreover, the greater
the number of measures, the greater the speedup. Whenever
a new measure is added, the number of nodes to consider
is twice bigger and the speed-ups are multiplied by a factor
of 1.25 to 1.45 (see Columns 7 and 8 of Table I).

Finally, we measured the CPU times required to compute
Edge-Sky(M) and the CPU times spent by Orion. For
8 ≤|M |≤ 11, computing Edge-Sky(M) represents 90% of
the total CPU times. Once again, it shows the importance of
the quality of the approximation. The repartition seems to
be disproportionate, but computing skypattern cubes is much
harder than computing skyline cubes (see Section III).

2) Effectiveness of the approximation: To asses the qual-
ity of the approximation of a skypattern cube by Edge-
Sky(M), Table II reports, for different values of |M |, the
ratio of edge-skypatterns (resp. closed patterns) that are
not skypatterns in the cube. Column 1 corresponds to the
number of measures. Column 2 indicates the total number
of (distinct) skypatterns of the cube. Column 3 reports the
number of edge-skypatterns. Column 4 gives the number of

2A chemical Ch contains an item A if Ch supports A, and A is a
frequent subgraph of T .

CPU-Times Speed-Ups
(7) (8)

|M | (1) (2) (3) (4) (5) (6) (3)
(5)

(4)
(5)

(3)
(6)

(4)
(6)

2 15m:42s 17m:27s 14m:39s 7m:03s 6m:41s 5m:01s 2.19 1.05 2.91 1.40
3 50m:19s 47m:55s 28m:11s 18m:44s 10m:13s 8m:33s 2.76 1.83 3.30 2.19
4 2h:08m:40s 1h:56m:58s 1h:00m:44s 48m:43s 16m:47s 19m:06s 3.62 2.90 3.18 2.55
5 5h:21m:47s 4h:28m:09s 1h:37m:39s 1h:19m:30s 29m:42s 24m:04s 3.29 2.68 4.06 3.30
6 10h:49m:45s 9h:50m:41s 3h:29m:20s 2h:04m:45s 30m:06s 32m:28s 6.95 4.14 6.44 3.84
7 19h:01m:22s 21h:08m:11s 7h:20m:13s 3h:09m:34s 37m:37s 34m:14s 11.70 5.04 12.86 5.54
8 58h:05m:32s 44h:41m:11s 15h:15m:33s 4h:40m:02s 39m:14s 35m:21s 23.33 7.13 25.90 7.92
9 131h:03m:16s 93h:36m:37s 31h:31m:17s 6h:43m:06s 39m:44s 35m:45s 47.60 10.14 52.89 11.27

10 175h:17m:57s 194h:46m:36s 64h:44m:06s 9h:26m:41s 41m:25s 36m:24s 93.78 13.68 106.66 15.56
11 523h:11m:58s 402h:27m:40s 131h:58m:47s 12h:59m:35s 42m:07s 39m:52s 187.98 18.51 198.63 19.56

(1) Base-Line-Aetheris (3) MICMAC+Orion (5) Edge-Aetheris+Orion
(2) Base-Line-CP+SKY (4) CP+SKY+CUBE (6) CP+Edge-SKY+Orion

TABLE I: COMPARING CPU-TIMES (MUTAGENICITY).

FIGURE 2: COMPARING CPU-TIMES (MUTAGENICITY).

closed patterns. Column 5 (resp. 6) denotes the ratio of edge-
skypatterns (resp. closed patterns) that are not skypatterns.
For |M |=k, reported values are the average values over all(
11
k

)
possible skypattern cubes.

Columns 5 and 6 clearly show that Edge-Sky(M) pro-
vides a much better approximation than Closed(M): i)
the number of edge-skyppaterns is always smaller than the
number of closed patterns, ii) for |M | ≥ 6, the ratio for
edge-skypatterns is between 30% and 50%, while for closed
patterns this ratio is always greater than 75%.

C. Skypattern cubes for UCI datasets

Experiments were carried out on 14 various (in terms of
dimensions and density) datasets from UCI3 benchmarks.
We considered 5 measures M={freq, max, area, mean,
growth-rate}. Measures using numeric values, like mean,
were applied on attribute values that were randomly gener-
ated within the range [0..1].

3http://www.ics.uci.edu/∼mlearn/MLRepository.html

|M | nCube(M) nEdge(M) nClosed(M) (5) (6)
2 158.84 740.56 311,254.41 0.79 0.99
3 317.96 1,263.55 344,641.68 0.75 0.99
4 588.38 2,056.70 362,054.86 0.71 0.99
5 1,454.11 3,497.94 371,127.89 0.58 0.99
6 3,507.12 6,513.64 382,273.50 0.46 0.99
7 8,352.34 13,316.40 394,456.48 0.37 0.97
8 19,537.90 29,079.40 412,000.00 0.33 0.95
9 44,552.70 65,687.70 437,734.00 0.32 0.89

10 98,515.50 150,060.00 455,986.55 0.34 0.78
11 110,689.00 172,447.00 483,320.00 0.36 0.77

(5) 1− nCube(M)
nEdge(M)

(6) 1− nCube(M)
nClosed(M)

TABLE II: EFFECTIVENESS OF THE APPROXIMATION (MUTAGENICITY).

1) CPU-time analysis: Table III compares the CPU-
times for computing Sky(M) for the six methods on every
dataset. As for the Mutagenicity dataset: i) the two
baseline methods have a similar behavior but are far from
the other four methods, ii) the two methods based on
the approximation by Edge-Sky(M) are equally effective
and outperform the bottom-up approach CP+SKY+CUBE,
iii) MICMAC+Orion is of average quality, except for a
single dataset (mushroom) where MICMAC+Orion is the
most efficient method. This is due to the low density of
mushroom (about 19%) and to the small number of closed
patterns w.r.t its size. Finally, the speed-ups are lower than
those of Mutagenicity since |M | is small.

2) Effectiveness of the approximation: Column 5 (resp.
Column 6) of Table IV reports, for each dataset, the ra-
tio of edge-skypatterns (resp. closed patterns) that are not
skypatterns in the cube. These 2 columns clearly highlight
the quality and relevance of the approximation using Edge-
Sky(M). For most of datasets, the ratio is less than 5%
(sometimes less than 1%), and of very small size compared
to the approximation using closed patterns.
Table V focusses on the 3 datasets having the largest cubes:
german, hypo and mushroom. For |M |=k, reported
values are the average values over all

(
5
k

)
possible skypattern

cubes. Columns 5 and 6 confirm the results depicted at
Table IV. Extra patterns always represent less than 1%.

Dataset |I| |T | density (1) (2) (3) (4) (5) (6)
austral 55 690 0.272 6m04s 4m15s 6m00s 1m31s 2m18s 36s
cleve 43 303 0.325 1m53s 1m21s 28s 21s 18s 10s
cmc 28 1,474 0.357 26s 2m23s 31s 22s 10s 22s
crx 59 690 0.269 8m40s 5m37s 1m49s 1m13s 1m49s 40s

german 76 1,000 0.276 2h34m18s 53m29s 1h33m19s 14m03s 1h16m11s 10m29s
heart 38 270 0.368 1m46s 58s 38s 19s 29s 15s
horse 75 300 0.235 10m34s 3m32s 3m43s 58s 2m28s 41s
hypo 47 3,163 0.389 6h13m57s 51m46s 1h11m19s 44m41s 1h16m19s 38m58s

lymph 59 142 0.322 4m32s 49s 1m34s 31s 34s 19s
mushroom 119 8,124 0.193 1h53m39s 9h23m28s 55m23s 8h54m43s 45m51s 2h00m77s
tic-tac-toe 29 259 0.344 1m10s 2m48s 53s 41s 41s 16s

vehicle 58 846 0.327 34m01s 16m41s 5m45s 2m55s 3m32s 1m42s
wine 45 179 0.311 1m00s 31s 44s 13s 19s 5s
zoo 43 102 0.394 19s 8s 3s 3s 2s 2s

(1) Base-Line-Aetheris (3) MICMAC+Orion (5) Edge-Aetheris+Orion
(2) Base-Line-CP+SKY (4) CP+SKY+CUBE (6) CP+Edge-SKY+Orion

TABLE III: CPU-TIMES (UCI DATASETS).

Dataset nCube(M) nEdge(M) nClosed(M) (5) (6)
austral 100,534.00 107,632.00 337,399.00 0.07 0.68
cleve 37,021.00 37,105.00 99,840.00 0.00 0.63
cmc 11,744.00 11,791.00 26,862.00 0.00 0.56
crx 102,690.00 104,377.00 409,615.00 0.02 0.75

german 1,138,533.00 1,149,315.00 4,715,852.00 0.01 0.76
heart 33,355.00 34,269.00 91,020.00 0.03 0.62
horse 119,446.00 119,587.00 297,627.00 0.00 0.60
hypo 671,929.00 677,051.00 1,605,518.00 0.01 0.58

lymph 45,799.00 54,880.00 161,447.00 0.17 0.66
mushroom 554,943.00 555,377.00 1,708,099.00 0.00 0.67
tic-tac-toe 15,020.00 15,310.00 49,822.00 0.02 0.69

vehicle 126,322.00 127,682.00 805,311.00 0.01 0.84
wine 13,835.00 13,941.00 47,846.00 0.01 0.71
zoo 4,375.00 4,509.00 16,697.00 0.03 0.73

(5) 1− nCube(M)
nEdge(M)

(6) 1− nCube(M)
nClosed(M)

TABLE IV: EFFECTIVENESS OF THE APPROXIMATION (UCI DATASETS).

|M | nCube(M) nEdge(M) nClosed(M) (5) (6)
german

2 315,280.00 315,646.00 3,942,910.00 0.00 0.92
3 556,458.00 558,325.00 4,242,910.00 0.00 0.87
4 835,367.00 840,539.00 4,500,560.00 0.01 0.81
5 1,138,533.00 1,149,315.00 4,715,852.00 0.01 0.76

hypo
2 245,748.00 246,882.00 1,267,060.00 0.00 0.81
3 380,205.00 383,674.00 1,453,550.00 0.01 0.74
4 522,325.00 527,288.00 1,566,360.00 0.01 0.66
5 671,929.00 677,051.00 1,605,518.00 0.01 0.58

mushroom
2 108,658.00 108,675.00 920,010.00 0.00 0.88
3 236,782.00 236,860.00 1,216,090.00 0.00 0.81
4 391,253.00 391,465.00 1,478,786.00 0.00 0.74
5 554,943.00 555,377.00 1,708,099.00 0.00 0.67

(5) 1− nCube(M)
nEdge(M)

(6) 1− nCube(M)
nClosed(M)

TABLE V: ZOOMING ON THE THREE SELECTED DATASETS.

VI. CONCLUSION

We have proposed an approximation based approach to
compute skypattern cubes using soft skypatterns. Experi-
ments show that our approach clearly outperforms the unique
existing approach and enables to compute skypattern cubes
of larger dimension. Navigation through the cube is a highly
promising perspective, equivalence classes being able to give
prominence the measures having the same skypattern set.

Acknowledgments. This work is partly supported by
the ANR (French Research National Agency) funded
projects FiCoLoFo ANR-10-BLA-0214 and Hybride ANR-
11-BS002-002.

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline
operator,” in ICDE, 2001.

[2] A. Soulet, C. Raı̈ssi, M. Plantevit, and B. Crémilleux, “Mining
dominant patterns in the sky,” in ICDM, 2011.

[3] W. Ugarte, P. Boizumault, S. Loudni, B. Crémilleux, and
A. Lepailleur, “Mining (soft-) skypatterns using dynamic
CSP,” in CPAIOR, 2014.

[4] C. Raı̈ssi, J. Pei, and T. Kister, “Computing closed skycubes,”
PVLDB, vol. 3, no. 1, 2010.

[5] W. Ugarte, P. Boizumault, S. Loudni, and B. Crémilleux,
“Computing skypattern cubes,” in ECAI, 2014.

[6] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang, “Computing
compressed multidimensional skyline cubes efficiently,” in
ICDE, 2007.

[7] H. Mannila and H. Toivonen, “Levelwise search and borders
of theories in knowledge discovery,” DMKD, 1997.

[8] B. Négrevergne, A. Dries, T. Guns, and S. Nijssen, “Domi-
nance programming for itemset mining,” in ICDM, 2013.

[9] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang,
Y. Tao, J. X. Yu, and Q. Zhang, “Towards multidimensional
subspace skyline analysis,” ACM ToDS, 2006.

[10] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang,
“Efficient computation of the skyline cube,” in VLDB, 2005.

[11] J. Pei, W. Jin, M. Ester, and Y. Tao, “Catching the best
views of skyline: A semantic approach based on decisive
subspaces,” in VLDB, 2005.

[12] M. van Leeuwen and A. Ukkonen, “Discovering skylines of
subgroup sets,” in ECML/PKDD, 2013.

[13] M. L. Yiu, E. Lo, and D. Yung, “Measuring the sky: On
computing data cubes via skylining the measures,” IEEE
TKDE, vol. 24, no. 3, 2012.

[14] G. Verfaillie and N. Jussien, “Constraint solving in uncertain
and dynamic environments: A survey,” Constraints, 2005.

[15] A. Soulet and B. Crémilleux, “Adequate condensed represen-
tations of patterns,” DMKD, vol. 17, no. 1, 2008.

[16] K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. ter Laak,
T. Steger-Hartmann, N. Heinrich, and K. Müller, “Benchmark
data set for in silico prediction of ames mutagenicity,” Journal
of Chemical Information and Modeling, 2009.

