
Towards an on-line optimisation framework
(2/(� �FRQVRUWLXP���HROH#WKDOHVJURXS�FRP�

7+$/(6�5HVHDUFK�DQG�7HFKQRORJ\��6LPRQ�GH�*LYU\��<RXVVHI�+DPDGL��-XOLHWWH�0DWWLROL��3KLOLSSH�*pUDUG�
21(5$���'6&'��0LFKHO�/HPDvWUH��*pUDUG�9HUIDLOOLH�
&26<7(&��$EGHUUDKPDQH�$JJRXQ��,GLU�*RXDFKL�
%28<*8(6���H�ODE��7KLHUU\�%HQRLVW��(ULF�%RXUUHDX��)UDQoRLV�/DEXUWKH�
(FROH�GHV�0LQHV�GH�1DQWHV��3KLOLSSH�'DYLG��6DPLU�/RXGQL�
)UDQFH�7pOpFRP���5	'���6HUJH�%RXUJDXOW

Abstract
This paper is a survey and concept paper, listing and discussing various ideas relevant to the use of on-line
solving. We propose a new software architecture for the design of on-line search algorithms. We define the
temporal control, the main component of this architecture, for the case of partial search algorithms, well-suited to
a limited response time. We also investigate hybrid search algorithms, which include partial search algorithms.
Our main goal is to extend the Constraint Programming paradigm to on-line combinatorial problem solving. The
extensions concerning the constraint solver are discussed in the last section.

1 Scope and objectives of the EOLE project
Optimisation functions, and quite particularly on-line optimisation functions, will be a major vector for the
Quality of Services enhancement, by increasing flexibility and capacity of adaptation of Telecom systems to the
evolution of the demand and to the state of their appropriate resource. The purpose of the EOLE project is to
build an on-line optimisation framework dedicated to the Telecom domain, able to take into account
environment events, reconfiguration possibilities, temporal constraints and resource constraints.

1.1 On-line optimisation problematic
Few years ago, Constraint Programming (CP) was identified as a key technology that was going to increase the
efficiency and the competitiveness of companies. This technique, arisen from the interaction between Artificial
Intelligence and Operations Research, opened perspectives of optimisation for numerous industrial applications.
Ten years later, the CP contribution, for the expression and the resolution of complex combinatorial optimisation
problems, is not to be any more demonstrated. The success emanates mainly from the flexibility that CP offers in
term of modelling. CP is a paradigm that, not only allows solving combinatorial problems, but also is able to
express them in their global nature by means of a unique formalism. It is not generally the case of the alternative
techniques. This trump card turned out determining in the case of the industrial applications for which the
specifications are often diverse, badly known at first, and subject to fast evolutions.

It is today indisputable that CP answers the industrial needs of optimisation off-line as a batch process.
Numerous systems using this technology are already operational in different fields of activity: management,
production, transport, and finance. However, these systems, to remain relevant in particular in the Telecom
world, should become more and more dynamic and support on-line interactions with their environment. The
solution should be maintained up to date dynamically according to the modifications of the environment or the
available resources. These dynamic systems, subject to temporal constraints, do not benefit for the moment from
the constraint technology because CP is well suited to the resolution of off-line problems. Not only no time or
space guarantee is supplied, but also, the current CP solvers do not lend themselves to the combination with the
other paradigms of resolution, such as stochastic programming (for example, see [Voudouris et al. 01]), better
adapted to an on-line context.

1.2 EOLE objectives and work plan
In the current situation, a software engineer who wants to use CP for solving an on-line combinatorial problem
has no tool at his/her disposal. Its unique choice is to interrupt the resolution at the end of the timeout, what is
not always the best option in term of quality and turns out even sometimes impossible because no solution has
been found. Our proposal is to build a CP system that selects and configures a search algorithm for each solving
request. The algorithm seeks to produce a good solution based on some optimisation function. This system can
be viewed as a purely reactive system. The proposed approach consists of combining the flexibility of modelling

1 The French EOLE project, the name of which stands for Environnement d’Optimisation en LignE (on-line
optimisation framework), is in part funded by the French Réseau National de Recherche en Télécommunications.
See http://www.lcr.thomson-csf.com/projects/www_eole.

of constraint technology, the power of resolution of hybrid algorithms, and the relevance to real-time operational
constraints of anytime algorithms2. The evaluation of the quality of a solution, the temporal control of search
algorithms, the search procedure parameterisation and the hybridisation of tree search methods and local search
methods are the fundamental points that will be investigated by the EOLE project. Robustness or stability of the
solutions are not studied.
From the point of view of the software engineering, the proposed framework will be developed under the shape
of an on-line optimisation framework. This framework will offer, in the field of telecommunications, a set of
dedicated customisable hybrid algorithms, as well as mechanisms allowing to compose them and to manage
them according to the evolution of the situation and to the pre-established strategies of adaptation. This
framework should contribute to increase the robustness and the capitalisation of the software optimisation inside
the systems of telecommunication.

The EOLE project is a RNRT3 project supported by the French Research Office. It began on April 2000, and it
will be finished at the end of 2002. The work plan is divided into six sub-projects. The first one consists in
establishing the foundations, concepts and perimeter of use of an on-line optimisation framework. This sub-
project should supply with formalisms to express algorithms the behaviour of which answers the defined
characteristics. The second sub-project consists in offering above the Claire© language, and above the
ECLAIR© constraint library4 or the Choco constraint library, primitives implementing the previous formalisms.
Finally, it aims at producing the integration of these tools and libraries in an object-oriented framework. The
following three sub-projects allow the validation through a set of benchmarks led on three experimental
applications:
• The network allocation optimisation of resources during a reconfiguration,
• The ATM networks management,
• The frequencies assignment for the cellular phone.
And the last sub-project attempts to define an industrialisation plan of the developed technology.

2 A generic architecture for on-line constraint optimisation
The EOLE architecture described here is the first CP attempt to efficiently address on-line applications. This
framework will consider the environment of the systems, the needs for reconfiguration, temporal and resources
constraints. It will be the first integrated system dedicated to telecom applications test and development. In this
system, versatility is used to face dynamic changes of the environment. Search procedures are becoming
adaptive and temporal constraints are used to guide the adaptation in the on-line framework. In this section, we
describe the different components of the system. To face this important challenge we use state of the art research
results joined to pragmatic software integration. In the following, we show that decomposition combined to well
defined relations are the keys to reach reactivity in an on-line framework.

Temporal control

Heuristics

CP Model

Environment

 Search schemes

 Exploration
strategies

Figure 1: the EOLE architecture.

The figure 1 presents the EOLE architecture. This architecture improves the basic conceptual presentation of on-
line optimisation architecture. Usually these descriptions are very high level. They distinguish between a
decisional module and a solver. These two components interact by displaying results (from the solver) in
response to a previous command (from the decision module). Our architecture refines this classical
representation. In the following we describe the different components and their relationships.

2 Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases.
3 RNRT: Réseau National de Recherches en Télécoms
4 Claire© copyright Yves Caseau ; ECLAIR© copyright THALES Research and Technology

2.1 Model
The model is a classical CP model. It defines an optimisation problem by using variables with sets of values and
by restricting combination of values by the way of constraints. Optimisation variables are defined within the
model.

2.2 Heuristics
The first goal of the “Heuristics” component is to guide the resolution strategies. It can also be selected to
enhance search strategies. Each heuristic uses a normal representation. This allows easy comparisons as well as
efficient combinations. A combination of heuristics acts as a parameter addressed to a search scheme or an
exploration strategy. The link between the model and the heuristic component allows heuristic instantiation
[Minton 96].

2.3 Search schemes
A search scheme defines a structured view of a search space. We can define both local search and tree search
spaces. Tree search is implemented by defining an ordered set of choice-points. Each choice-point refers to a
sub-set of variables presented in the CP model. Local search will refer to these elements by defining particular
evaluation function and neighbourhoods. A combination of choice-points defines a complete search-space. As
presented above, a search scheme can refer to variables/values heuristics.

2.4 Exploration strategies
The EOLE architecture confronts between search-space and search-space exploration. This division allows a
distinction between a search procedure and its topic. An exploration strategy is applied on a search-space defined
by a search scheme. This separation gives efficient code reusing within the framework.
Exploration strategies try to solve a problem by doing an efficient exploration of its search space. They relate
choice-point and limitations in the exploration. More generally they give for each choice-point the right
focalisation by cutting the set of alternatives (e.g. set of values for a variable). These limitations allow us to
efficiently implement classical explorations (LDS, Iterative Broadening, Credit/Barrier, etc.). Local search
methods can also benefit from the limitations (max-flips, max-tries, etc). By switching between these strategies,
the EOLE architecture automatically defines and uses hybrid search. The connection between these strategies
and the heuristic box represents possibility for the user to change elements of the propagation engine (shaving,
fifo/lifo, hierarchical propagation, etc.).

2.5 Temporal control
The temporal component is the heart of the EOLE architecture. This component is connected to the outside
world. It receives requests and presents results to the end user. Moreover it guides the adaptation of the running
strategies to fit temporal and resource constraints. This component uses two operating mode corresponding to
possible requests from the outside world.
2.5.1 Contractual mode
The system receives resolution requests with a temporal constraint. Several tools are available here to select the
right search strategy. For example, the connection with the model allows prediction by the exploitation of
structural information (phase transition localisation, etc) [Cheeseman 91]. Learning about previous resolution
can help to find the best strategy. Interestingly, the on-line feature of the system allows efficient and cheap
prediction and learning since each solved instance can be used to enhance the system’s knowledge. With this
knowledge, the temporal component can adjust the limits of a search strategy. This correction corresponds to the
choice of a particular strategy. In this mode, the system can chain different search if the temporal constraint is
not exhausted.
2.5.2 Interrupting mode
The environment addresses a resolution request that can be interrupted at any time. The temporal module will
successively consider artificial temporal constraints. These constraints range from the tightest to the weakest.
Each constraint will be used to select the right search strategy. By this way, the system will always be able to
propose a solution to the problem and more importantly it will continue to refine it. This mode looks like a
succession of contractual executions. But interestingly, between each resolution, the previous solution can be
used to enhance reasoning of the following search.

The different components described here are the basis of an on-line optimisation framework. In the next section,
we refine this architecture to the case of partial search. Our final goal is to build a set of high-level search
primitives related to each functional component. These primitives help a technical expert for the design of on-
line optimisation algorithms. Section 4 proposes a set of primitives for hybrid search algorithms.

3 Temporal control of partial search algorithms

3.1 A survey of estimation tools
Controlling a search algorithm implies to answer general questions such as:
• How long will the algorithm take to finish the search?
• How far is the current best solution from the optimum?
• What will the improvement of the solution quality be if the search continues for a given time?
These questions are in general difficult to answer, due to the complexity of combinatorial problems and the non-
determinism of search algorithms. We present the existing solutions based on estimation only.
3.1.1 Estimating the search time
Estimating the time of a complete search enables to know how long it takes to find an optimal solution or a
solution with a given level of quality. We distinguish three approaches to estimate the time of tree search
algorithms:
• Statistic models of search trees. [Pemberton & Zhang 96] give a simplified model of a search tree, which is

defined by its maximum depth, its average branch factor and the distribution of the evolution of the
objective cost along a path. This model gives an analytical estimate of the number of nodes of the tree. If we
know the time needed to explore a node5, we obtain an estimation of the time required to explore the tree.
But we don’t know whether the simplified model reflects the reality.

• The iterative sampling method [Knuth 75] consists in performing several random descents along the paths of
a search tree. Collecting the depth of the descents and the branch factors observed along these paths, we can
deduce an estimate of the number of nodes of the tree. In the case of minimisation problems, the method
does not evaluate the size of the actual tree, but the size of an approximate tree, which corresponds to the
number of solutions with a cost lower than an initial upper-bound. The estimator variance can be estimated.
Experiments show that the variance is generally very high. The advantage of the method is its ability to
adapt to all combination of problem instances and algorithms. Moreover, it can be used during the search, to
estimate the size of the remaining part of the tree.

• The ratio method is a simplification of the above method. It consists in running the tree search algorithm for
a short period of time. From the ratio between the size of the explored part of the tree and the whole tree6,
we simply deduce an estimation of the total search time. This can be applied at any time during the search.
This method makes the assumption of a homogeneous tree.

All these methods lack accuracy, especially if the search tree is not well-balanced. They apply only to basic
complete search methods. In the case of partial search7, these methods have to be adapted. For example, a limit
on the number of nodes of a sub-tree is an upper bound for the iterative sampling method or the ratio method.
Estimation methods for partial search should give better results than for complete search if the search limits are
strong (the size of the tree becomes relatively small).

The time for estimating the duration of a search is an important criterion to select the right estimation method.
[de Givry et al. 99] dynamically choose the parameter values of a partial search algorithm, such as a limit on the
branch factor, according to a given time limit and a given problem instance. A fast estimation based on the ratio
method permits to quickly assess different parameter values. This assessment is done regularly, which
counterbalances the relative inaccuracy of the ratio method.

Note that in the case of local search, time estimations are easier. For example, for GSAT [Selman et al. 92], it
depends directly on the number of tries and the number of flips. In the case of hybrid search, it gets more
complex. Hybrid search generally involves a number of internal local and tree searches. A specific estimation
should be done for each search. It may not be possible to do that before running the hybrid search because the
searches are often interdependent.

Another approach, which always works, consists in doing off-line experiments on a set of problem instances. It
is also useful for other estimation purposes, and it is discussed in the section 3.1.3.

5 The actual time is subject to high variations due to the propagation of global constraints.
6 Multiplying together all the sizes of the choice points belonging to the current path when the search stops
approximates the size of the whole tree.
7 A partial search is a tree search with some limits on the number of visited nodes. For example, one iteration in
the Limited Discrepancy Search algorithm [Harvey & Ginsberg, 1995] is a partial search. See section 3.2.1 for
more details.

3.1.2 Estimating the distance from the optimum
It is not possible to know the optimum before the end of a complete search, but we can bound the optimum by a
lower and an upper bound. The difference between the upper bound and the lower bound gives an upper bound
on the distance to the optimum. The distance estimation is a way of assessing the quality of a given solution. In
the case of a minimisation problem, search algorithms applied to the whole problem naturally produce upper
bounds. It is also the case if we constrain the problem further in order to obtain an easier problem (for example, a
polynomial problem). Lower bounds are obtained by:
• The initial propagation on the variable corresponding to the objective function.
• A complete Branch and Bound algorithm applied on a limited tree search, or using a best-first strategy. An

idea is to use the lower bounds, which are computed at each node of the tree, in order to produce a global
lower bound. See [Cabon et al. 98] for experiments on six variants of a Branch and Bound search, producing
anytime lower bounds.

• Solving completely a simplified problem: the optimum of the simplified problem, either is a lower bound of
the original problem, or allows computing such a bound. The simplification may be a relaxation of the
constraints, such as removing or weakening some constraints. It may be a modification of the objective
function [de Givry et al. 97].

• Studying the structure of the minimisation problem, one can deduce obvious lower bounds. For example, in
the Travelling Salesman Problem, a trivial lower bound is the sum of the shortest distances starting from
every city.

• For some combinatorial problems, there exist approximate algorithms that guarantee a distance to the
optimum (see [Cormen et al. 94] for an example on the Travelling Salesman Problem).

Except for the first two approaches, the ways of producing lower bounds are problem dependent.
3.1.3 Estimating the evolution of the solution quality
Knowing the evolution of the solution quality is a key point for controlling search algorithms. The estimation
approach is based on performance profiles studied in Anytime Algorithms (see for an overview, [Zilberstein
96]). A performance profile of a search algorithm, Q(t), denotes the expected solution quality with execution
time t. Performance profiles are constructed off-line empirically by collecting statistics on the evolution of the
solution quality of a search algorithm on many problem instances.
There are several difficulties to obtain relevant statistics:
• The problem instances used for the experiments must be representative of the real instances.
• The problem instances have to be characterised by some parameters in order to classify them into families

having the same performance profile. These parameters may be the instance size (e.g. number of variables),
the intrinsic difficulty (e.g. tightness of the constraints), etc.

• The solution quality should be normalised. This is not true if the solution quality derives directly from the
objective function. An idealistic approach would be to compute off-line, for each problem instance, its worst
solution cost, W, and its optimum, O. A normalised quality is Qnorm(t) = (W – C) / (W – O), where C is the
cost of the best solution found at time t. A pragmatic approach is to define the quality as the percentage of
improvement with respect to the initial cost, C0, of the first solution found by the search algorithm, Qpragm(t)
= (C0 – C) / C0. This pragmatic approach gives an estimation of the evolution of the solution quality. Other
approaches have to be defined if we want to use the performance profile in a different goal, such as the
comparison of several algorithms.

• The experiments should cover all the problem instances and all the available search algorithms. The
execution time of one search has to be long enough to cover any time limit.

The effort spent on the experiments will improve the quality of the performance profiles, by reducing the
estimate’s variance. The experiments may be too long if the problem instances are too large, if the maximum
time limit is too long, or if we test too many search algorithms. Hopefully, in an on-line context, the successive
problem instances to be solved evolve progressively. Successive instances have quite the same difficulty. This
regularity enables to enhance the estimation by using some learning mechanisms.

3.2 Overview of partial search algorithms
In this section and the next one, only tree search algorithms and their temporal control are discussed. We focus
our work on tree search methods because of their compatibility with the Constraint Programming paradigm. We
call a partial search algorithm any tree search algorithm that has been designed for a context where the running
time is limited. [Harvey 95] calls it Nonsystematic Backtracking Search. The main idea is to diversify the search
by avoiding the trashing phenomenon of systematic backtracking methods8. The diversification principle is also
applied in local search methods for escaping from local minima. Partial search consists in restricting the search

8 Systematic backtracking methods can spend a very long time to explore a sub-tree containing no feasible
solution or only sub-optimal solutions. See [Hogg et al. 96, Gomes et al. 98] for an analysis of this phenomenon.

by applying limits on the explored nodes and in modifying the exploration order of the nodes by using the
heuristics in a more clever way. We call these limits, the search limits. We give a classification of the most
promising existing partial search algorithms:
• The Iterative Weakening methods. Typical examples are Iterative Broadening [Ginsberg & Harvey 92],

Limited Discrepancy Search [Harvey & Ginsberg 95], etc. The strategy is to solve the same problem
repeatedly with the search limits progressively relaxed at each iteration. The successive searches are of
increasing complexity, until optimality is proved or the deadline is reached.
The main drawback of these methods is that each new iteration revisits all the interior9 nodes of the previous
iteration, except when a tighter upper bound has been found. The ability to find decreasing upper bounds
quickly during the first iterations helps the Depth First Branch and Bound algorithm to cut branches earlier
in the next iterations. This point alone justifies iterative methods.

• The Real-Time Search methods. The idea is to adjust the size of the explored search tree to the time limit.
The search must end close to the deadline. [de Givry et al. 99] use time estimation in order to select the right
parameter values: regularly, a controller estimates the time to finish the search with the current parameter
values and compare it with the remaining time. If the difference is too large, the parameters are tuned again.
[Korf 90] dynamically adjusts the depth of a look-ahead search, inserted in a Best First Search algorithm.
[Chu & Wah 91] dynamically adjust the convergence speed parameter of the Iterative Approximating
algorithm.

• The Iterative Sampling methods. They consist in trying several different value and variable heuristics
rapidly by doing greedy searches or very incomplete searches. A way of obtaining new heuristics consists in
randomly biasing a given heuristic (see [Gomes 98] for biased variable heuristics and [Bresina 96] for
biased value heuristic). A simpler approach consists in using random value selection (see for example
[Langley 92]). The main drawback of these methods is a difficulty to improve the solution quality when a
large amount of time is allocated. This is due to a large degree of incompleteness and also to blind searches
in case of a random selection. A solution proposed by [Gomes 98] is to increase the search complexity every
n searches. The authors show that multiple searches eliminate the phenomenon of “heavy-tailed cost
distributions”. This means that at any time during the experiments, we have a non-negligible probability to
encounter a problem that requires exponentially more time to solve than the previous ones. They also show
that multiple searches have a non-negligible possibility of very short runs that dramatically shorten the
solution time.

• The Interleaving methods. This approach consists in solving simultaneously different parts of a single
search tree. In practice, the tree is divided into several sub-trees starting from the root. The sub-trees are
explored by using an interleaving approach [Meseguer 97]. The idea is to reduce the cost of heuristic errors
at the top of the tree. Parallelism instead of interleaving is easy to implement and can provide super-linear
speedups.

3.3 The contractual mode for partial search algorithms
In a contractual mode, the time limit is known before the search. Our objective is to take advantage of this
information as much as possible. We describe a new methodology for designing partial search algorithms that
take into account a limit on their running time. This design methodology corresponds to an instance of the
generic architecture given in section 2. The temporal control of partial search methods is defined explicitly, as
explained below.
3.3.1 Parameterised tree search algorithms
In a limited time, partial search algorithms explore a small fraction of the search tree only. Our goal is to express
explicitly what nodes should be visited. There are multiple ways of limiting the search. Assuming a standard
depth first branch and bound algorithm, we suggest three main approaches:
• Limits related to a node. For a given variable, restricts the value enumeration to a subset of the domain

according to some heuristic. For example, uses a cardinality condition (n best ranked values) or a metric
condition (maximum distance to the best value). Or uses a condition on the node’s lower bound by enforcing
arbitrary smaller upper bounds10. For example, replaces the backtrack condition of the classical Depth First
Branch and Bound (ub ≤ lb(node)) by a weaker condition (ε . ub ≤ lb(node), 0 < ε ≤ 1).

• Limits related to a path. For example, for a path involving a set of variables, restricts the cumulated
number of heuristic discrepancies [Harvey & Ginsberg 95]. Or uses a condition on the node’s lower bound,
enforcing lb(current_node)≤ lb(father_node) + δ (see [Zhang 98]).

9 Some iterative methods do not revisit the leaf nodes of the previous iteration [Korf 96, Walsh 97].
10 For minimisation problems.

• Limits related to a sub-tree. For example, uses some topological conditions (maximum number of nodes,
maximum number of backtracks, maximum number of leaves, etc.). Or uses a global metric condition (n
best leaves).

We can combine the limits. In [Beldiceanu et al. 98], a discrepancy limit and a maximum number of backtracks
are applied. Also, we can restrict the scope of the limits to a given depth interval in the search tree.

The above examples exhibit several parameters, which control the complexity of a search. Our objective is to
produce from a single scheme a parameterised search algorithm that lies somewhere between the greedy and
complete extremes. This allows to reuse the same algorithm with different parameter values for different time
limits. The search limits correspond to an exploration strategy in the EOLE architecture.
3.3.2 How to control one search?
We distinguish three different tuning strategies for tuning the parameters of a parameterised search algorithm,
depending on the dynamics of the strategy:
• A static tuning of the parameters. It consists in fixing the parameters before the search so that the algorithm

performs well on average for a set of problem instances and a given contract duration. To achieve that, we
use the performance profiles obtained by off-line experiments to choose between several parameter
configurations of the search algorithm. The main drawback of problem-dependent tuning is the inability to
adapt to a particular problem instance. For example, the algorithm can terminate long before the end of the
contract duration or can be interrupted long before its termination.

• An iterative tuning. This is the strategy applied by Iterative Weakening methods. The iterative methods can
be seen as a way of transforming a contract algorithm such as a parameterised tree search algorithm into an
anytime algorithm. A simple strategy, optimal under certain assumptions, is to double the search complexity
at each iteration (see for a proof [Russell & Zilberstein 91]). This can be done by weakening the search
limits of the next search such that the estimated time of the next search doubles the time of the previous
search. And during the last iteration, a further improvement consists in applying a dynamic tuning to adjust
to the remaining time.

• An adaptive tuning. Here, we want to adapt the search parameters to the specific instance to solve. A way
to do that is to collect information during the search in order to refine the parameters of the instance and to
reuse the corresponding performance profiles to choose the best tuning. This approach is applied in the
Eureka system [Cook & Varnell 97]. A different approach is to adjust the size of the explored search tree to
the time limit like it is done in Real-Time Search methods.

In the case where the search limits are tuned dynamically, we distinguish two situations:
• The search limits are tightened. The size of the explored search tree is reduced.
• The search limits are relaxed. The size of the tree grows. In the case of a depth-first search, the sub-trees

already cut by the previous limits will not be explored in spite of the enlarged limits. We have to restart the
depth-first search to be able to explore these sub-trees.

Note that a dynamic change of the time limit (due to some external events) can be handled similarly: the
parameters have to be tuned again.

What tuning strategy should one choose? It depends both on the time limit and on the problem. Note that a static
tuning can be combined with an adaptive or an iterative tuning, by setting some parameters.

In the three approaches described above, we can simplify the tuning process by providing an ordered tuning
policy. The number of possible values for the parameters may be huge. It is impossible to test all the
combinations. Also, some different combinations may imply the same search duration. Thus, we propose to
establish experimentally a list of interesting tuples of parameter values. Then, we can sort these tuples by an
order of increasing complexity, the first tuple corresponding to a greedy search and the last tuple to a complete
search. We call this ordered list a tuning policy. Now, the search limits can be tuned by a unique global
parameter, which is the index in this list. Modifying the index has a direct effect on the search complexity and
the solution quality. Such a tuning policy is important to guide the iterative tuning (especially in the case of
several limits) and to speed up the convergence of the adaptive tuning.

The figure 2 summarizes our methodology in terms of architecture for expressing a parameterised tree search
algorithm and its tuning policy. The tuning strategy is chosen by the temporal strategy, presented in the next
section.

Heuristics

 Search limits
+

Tuning policy

Search
scheme

A search tree A branch factor limit p after depth d

d

TP(d,p) = ((1,1), (2,1), (3,1), (3,2), (4,2), (5,2), (5,3), …)

Figure 2: Architecture of a parameterised tree search algorithm defined as the application of search limits
to a search scheme, with a tuning policy indicating the permitted values of the limits. In the example, the
first element of the tuning policy is (d,p) = (1,1) corresponding to a greedy search. The tuning policy
increases the backtracking at the root of the search tree more than at the bottom.

3.3.3 How to control multiple searches?
In the case of the iterative sampling methods and the interleaving methods, they perform several searches with
different search schemes or different heuristics, either sequentially or by interleaving. We propose two operators
to specify the temporal strategy of multiple search methods:
• seq, the sequence operator (S1 seq S2). The searches are performed one after the other.
• int, the interleaving operator (S1 int S2). The searches are performed simultaneously (by interleaving

or in parallel): the computational resources are shared by all the search processes.
The searches just share the best solutions found so far. The current best cost is used as a cut in every search.

The seq and int operators express a basic temporal control of a complex search algorithm: they specify how to
allocate the available time to each search. By default, in the case of a sequence, the total time is given to the first
search, the remaining time is given to the second search, and so on. In the case of interleaving, the same time is
allocated to every search, and the computational resources are shared equitably.

We introduce the notion of time-sharing policy to express more clever temporal strategies. We add such a policy
to the definition of a sequence or an interleaving. For example, for a sequence of N searches, the time limit can
be divided into N parts, with a fixed search ratio for each part. In the case of interleaving, the most promising
searches can get more computational resources as time passes. [Prcovic & Neveu 00] choose to allocate more
cpu time to the search that reaches the deepest node in the search tree.

The temporal control selects11 and monitors a temporal strategy. The temporal strategy defines a hybridisation
process explicitly (the control of different searches). It stipulates how to distribute a given contract to a number
of searches. Each search will have its own deadline used by its tuning strategy (see section 3.3.2), which is
chosen by the temporal strategy. In our opinion, this is a major concept for the design of on-line search
algorithms.

The figure 3 shows the architecture for expressing a partial search algorithm taking into account a time limit. The
figure 4 derives the EOLE architecture to the case of a contractual mode for partial search algorithms. And
finally, the figure 5 summarizes how a time contract is taken into account in our approach. There is a THALES
patent related to all the architecture described in section 3.3.

11 Based on some selection rules obtained by learning.

+HXULVWLFV
 Search limits

+
Tuning policy

Search
scheme

3DUWLDO�VHDUFK�K\EULGL]DWLRQ�
+

Time-sharing policy

nnn

Exploration Strategy Temporal Strategy

Search trees

A
:

B
:

//

Greedy search with look-ahead

Limited Discrepancy Search

50%

50%

Figure 3: Architecture of a partial search algorithm taking into account a time limit. In the example, the
temporal strategy corresponds to the interleaving of two parameterised tree search algorithms applied on
two different search schemes (A and B). The time-sharing policy consists in sharing the computational
resources equitably.

 Temporal control

Heuristics

CP
model

Exploration
strategy

Search scheme

Time Solutions Combinatorial problem

Temporal
strategy

Figure 4: The EOLE architecture derived to the case of partial search.

We are currently investigating how hybrid search algorithms12, involving both tree search and local search, could
be controlled in the same way as we described. The cooperation between searches would be tighter: sharing
solutions, cost, value heuristics, and variable heuristics, etc. A blackboard architecture [Corkill 91] can be used
to implement the cooperation.

12 More specifically, the class of cooperative hybridisations, which is described in the next section. Applying a
temporal control for the class of intertwined hybridisations is much more complex.

�
6ROXWLRQV

Time
Contract

t

Collection
of TSs

Selects
one TS

Partial
exploration

of SS1

Selection
rules

TS’s time-
sharing policy

Tunes the
ES1 limits

Distributes t
to all the ESs

+
Imposes the tuning

strategy for each ESi
+

Sequences/interleaves
 all the ESs

Partial
exploration

of SSn

Tunes the
ESn limits

t

t1, tuning strategy

tn, tuning strategy

limits

limits

Tuning policies
 associated to

every ESi

int or seq

Temporal control
(can modify the dynamic tuning or the TS selection if t change)

Model

Heuristics

Data obtained by
a learning phase

TS: Temporal Strategy
ES: Exploration Strategy
SS: Search Scheme

Figure 5: Description of the temporal control of partial search algorithms taking into account a time limit.

4 Hybrid search algorithms
Hybrid algorithms are interesting for on-line optimisation, because they appear as possible compromises
between extreme methods. A good hybrid algorithm for on-line optimisation can be parameterised, and its
parameters can be tuned such that the realized compromise is adapted to the available computation time (see
section 3).

4.1 Components of hybrid algorithms
Hybrid algorithms for combinatorial optimisation borrow their mechanisms from both
• Systematic global search methods, of which the main representative is the Depth First Branch and Bound

(DFBB); these methods can be complete.
• Opportunistic local search methods, such as Simulated Annealing and Taboo Search ; these methods are

incomplete in general.
A complete method provides guaranteed optimal solutions, but generally within a prohibitive computation time,
often not compatible with the needs of on-line optimisation. The main mechanism of global search is refinement,
with two facets:
• Decomposition: the ability to decompose instances into unconnected sub-instances,
• Filtering: the ability to locally exclude partial solutions on a sound basis, as being infeasible or sub-optimal.
On the other side, local search is supposed to compute good solutions within a short period of computation time,
but offers no guarantee for the quality of the provided solutions. Its main mechanism is the transformation of an
instance into a close another one, in a direction guided by some heuristics. Solution repair is another kind of
transformation.

4.2 Overview of hybrid algorithms
We present now an inventory of most attractive and relevant existing hybrid methods, in order to point to those
most useful for on-line optimisation.
Most proposed hybridisations are intertwined hybridisations: refinements and transformations are closely
mingled during computation. Here are the most interesting examples of this kind of hybridisation:
• During a Branch and Bound search, a local search can be done at some choice points, in order to find rapidly

good solutions in the corresponding sub-space, and to quickly improve the upper bound (in case of a
minimization task). As a special case of this technique, a local search at the root node is often used.

• Shuffling [Applegate & Cook 91], in the field of disjunctive scheduling, is an often-cited technique: a
starting complete schedule is partially broken, then rebuilt by mean of a complete algorithm (known as
edge-finding), and the process is iterated. [Pesant & Gendreau 99] exploit the same schema in the context of
Constraint Programming applied to the TSP (Traveling Salesman Problem).

• [Caseau et al. 99] describe a combination of a limited tree search algorithm (in this case a Limited
Discrepancy Search, [Harvey & Ginsberg 95]), improved by constraint filtering. It builds good partial
instantiations that are further completed by local search (in this case a Large Neighborhood Search, [Shaw
98]).

• Path-repair [Jussien & Lhomme 00] can be seen as a local search upon the decision sequences leading to a
solution.

A different kind of hybridisations, we call cooperative hybridisations, mix different techniques for solving sub-
problems or related ones. Here are significant examples:
• [Caseau & Laburthe 95] describe a sequence of different optimisation tasks whose successively: compute

lower bounds of the cost of an optimal solution, find a first solution by a greedy algorithm, then launch
some local searches (using shuffling, cited above), ending in a global search for a proof of optimality.

• The randomisation and restart technique [Gomez et al. 98] may be seen as a hybrid method. Randomisation
roughly consists in making random choices (for variables and values) instead of regular ones, during a tree
search. Restart is a special case of transformation, in which a randomised tree search is stopped (after a well
chosen amount of time) and then restarted from the beginning. This diversification technique allows for
escaping from bad sub-spaces of solutions.

• Many examples may be found in which the main combinatorial problem to be solved can be transformed
into a polynomial problem by a slight modification (such as adding or removing some constraint). An
optimal solution to the modified problem can be close to an optimal solution of the unmodified problem. In
this case, it is often a good idea to first compute an optimal solution of the modified problem and then,
starting from this solution, to search for good solutions of the original one by local search. An example of
this methodology appears in [Vasquez and Hao 01].

The study of the numerous possible hybridisations of search methods eventually comes out into the following
conclusion: the atomic constituents of any search method are:
• Exploration mechanisms: refinements (decomposition, filtering) and transformations (jump in the

neighbourhood, repairing),
• Memorization mechanisms, allowing to record still unexplored sub-spaces of solutions,
• Global control search mechanisms.

4.3 A language for hybrid search algorithms
In this paragraph, we describe briefly a simple language the aim of which is to express hybridisations like those
sketched above.
Following the works of [Caseau et al. 99] and [Perron 99], the essential idea of this language is to describe
hybrid search algorithms by composition of terms. This is illustrated by the following simple example. The term
SEQ(GENERATE(vs1), LOCS(100, vs2)) corresponds to a tree search (GENERATE) on the variables of
the list vs1, composed sequentially (SEQ) with a local search (LOCS) on the variables of the list vs2 at each leaf
of the search tree (see the figure 2).

Figure 2: A hybrid search described by the term SEQ(GENERATE(vs1), LOCS(100, vs2)).
The mode transition corresponds to a switch from a realisable mode (i. e. with propagation) to a
relaxed mode (i.e. in which constraints may be violated).

A term denotes a basic search goal or a compound search goal. Basic search goals make up the kernel of the
language. Compound search goals are defined from basic search goals, or recursively rewritten from other
compound search goals, so this language is extensible.
Here is a significant excerpt of the grammar of the language:

Search ::= BasicSearch | CompoundSearch

BasicSearch ::= Decision | BasicComp

Decision ::= Refinement | Transformation

Refinement ::= SETV(Variable, Value) | REMV(Variable, Value) |
 ... | PROP(Integer)

Transformation ::= ASS(Variable, Value) | UNASS(Variable) |
 ... | ENLARGE(Variable, Values)

BasicComp ::= FAIL | SUCCESS | SEQ(Search1, Search2) | ALT(Search1,
Search2)

CompoundSearch ::= GENERATE(Variable) | GENERATE(Variables) | ...
 | FLIP(Variables) | LOCS(Integer, Variables) | ...

There are two kinds of basic search goals: decision goals (Decision) and basic composers (BasicComp).
Decisions can be refinements (basic decisions generally involved in a tree/global search) or transformations
(basic decisions generally involved in a local search).
A solver performing hybrid search must be able to reason in (and switch between) two distinct modes: (1) a
realisable mode, in which constraints are propagated, and accordingly, domains of variables are reduced, leading

tree search

local search

mode transition

vs1

vs2

consistent frontier

to possible fails; (2) a relaxed mode, in which constraints may be violated without failing, but effects of
violations are counted.
Examples of refinement (realisable mode) are:
• SETV, which reduces the domain of the variable to the given value and then propagates this reduction, or

fails if the value does not belong to the current domain,
• PROP, which propagates active constraints up to a given level of local consistency.
Examples of transformations (in relaxed mode) are:
• ASS, which assigns a value to a variable, regardless of its current domain,
• UNASS, which restores the initial domain of a variable.
ENLARGE(Variable, Values) is an example of transformation in realisable mode. It restores the set of
given values in the domain of the variable, maintaining the consistency of constraints holding on the variable.

SEQ and ALT are basic composers. SEQ(s1, s2) corresponds to conjunction of goals in Prolog [Van
Caneghem 86]: all (partial) solutions of the search s1 are starting states for the search s2. ALT(s1, s2) is the
disjunction of goals: it performs independently s1 and s2 from the same state.

GENERATE(Variable) and GENERATE(Variables) are compound search terms describing parts of
systematic tree search, in the way of OPL [Van Hentenryck 00]. GENERATE(V), where V is a variable, is
rewritten as ALT(SETV(V, x), SEQ(REMV(V, x), GENERATE(V))), where x is a value chosen in the
current domain of V. In other words, GENERATE(V) sets disjunctive goals, one for each value of the current
domain of the variable.
GENERATE(VS), where VS is a list of variables, is roughly rewritten as SEQ(GENERATE(V1),
GENERATE(VT)) where V1 is a variable in the list and VT is VS but V1. In other words, GENERATE(VS)
describe a search tree performed on the domains of the variables in VS.
On the other hand, FLIP and LOCS are components of local search. FLIP(VS) randomly chooses a variable in
the list VS and assigns it a randomly chosen value from its initial domain. LOCS(n, VS) performs a local
search involving n flips over variables of VS.
The term LOCS(n, VS) can be rewritten as SEQ(RASS(VS), ITERATE(n, FLIP(VS), PROP(0)))
where RASS(VS), initialising the search, is a compound search goal assigning random values to each variable
in VS. ITERATE(n, s, f), with n > 0, tries alternatively f (final search goal), and s (iterated search goal)
followed by ITERATE(n - 1, s, f):

ITERATE(n, s, f) = if (n = 0) FAIL()
else ALT(f, SEQ(s, ITERATE(n - 1, s, f)))

Let us give some hints on the foreseen implementation of this language. A hierarchy of classes is built, in
bijection with the grammar. The terms are constructors for objects of these classes. As said above, compound
search goals are dynamically expanded using rewriting rules, whereas basic terms are processed as direct calls to
specialized methods of the solver (CHOCO [Laburthe et al. 00]). As an elementary example, the term SETV
gives rise to an object belonging to the SetV class. Objects of this class are processed by the following method
(expressed in Claire [Caseau & Laburthe 96], the implementation language of CHOCO):

[solve(p:Problem, s:SetV) : boolean
 -> try (world+(), // saves the current solver state
 setVal(s.v,s.x), // reduces the domain variable,possibly failing
 propagate(p), // propagates active constraints,possibly failing
 true)
 catch contradiction // catches failings
 (world-(), // restores the solver state (backtrack)
 false)]

5 Extensions of constraint solvers to deal with on-line problems

5.1 Local search mechanisms
Constraint solvers are often designed as event schedulers: events corresponding to domain reductions occur and
the computation of a consistent state is a sequence of constraint propagation, posting new domain reductions and
so on. Local and hybrid search involve non-monotonic moves where domains are not only reduced, but may be

changed in any manner. For instance, a flip neighbourhood for the SAT problem amounts to change the value of
a variable from 0 to 1 (or conversely): the update of the domain, from {0} to {1} is not a monotonous mode.
This section provides a few technical hints on ways to extend the CP framework in order to implement such
mechanisms.

The architecture of a CP system can be described by two main components: an event scheduler handling
propagation and a global search controller. The scheduler goes through a loop of posting events and waking
propagation daemons for propagating constraints. The exploration of the search tree is based on the recursive
iteration of the branches associated to a choice point. We here show how both mechanisms can be extended to
local search.
For non monotonic moves, propagation needs to be turned off: indeed, since the engine generates infeasible
states, constraints may be violated and can therefore no longer be propagated. However, propagation can be
replaced by another event-based mechanism where:
• Non monotonic updates are the events. These events may be value flips, domain enlargements or constraint

repairs.
• Like monotonic events, each of these events induces a sequence of reactions (maintaining the count of

violated constraints or maintaining data structures used for generating the neighbourhood). As suggested in
the Localizer [Michel & Van Hentenryck 00] system, such computations can be described by means of
invariants, and thus implemented in an event based architecture. The implementation of Localizer has been
optimised and pre-compiles the incremental re-computation of events and uses immediate reaction. Other
implementations that store events in queues and react to them thereafter are possible. This is for instance
the case of the iOpt toolkit [Voudouris et al. 01] that uses a mark-and-sweep algorithm for maintaining
invariants. Anyhow, the computations for re-computing a solution from a basic move by invariant
maintenance can be described though events and reactions.

For the overall control of the algorithm, the standard scheme consists in changing (improving) a solution with
the scope of the moves supported by the neighbourhood. The overall sequence of moves is constructed by
applying moves one after the other until some convergence criterion is reached. Although at first sight quite
different from search trees, local moves algorithm can be described with the same tools as global search:
• Neighbourhoods can be described by abstract objects whose main method consists in generating a sequence

of states: each state is reached by posting an event and processing it. This analogy between branching
schemes and neighbourhoods is suggested in Localizer [Michel & Van Hentenryck 00] and developed in
Salsa [Laburthe & Caseau 98].

• The overall control of the local search algorithm (multiple descent, taboo, simulated annealing, etc.) can be
handled by a controller just like global search algorithms.

Thus, a common architecture based on events, daemons, abstract objects iteratively generating events and
controllers can be used for implementing local or global search algorithms. In order to implement hybrids
combining both techniques, the engine needs to be able to switch from one mechanism to another. Switching
from global search to local search is usually simple and fast: the invariants used by local search are usually
simple to initialise. On the contrary, the reverse transition may take longer: all constraints need to be checked
and enforced before any reasoning can start. Such a transition from an infeasible instantiation to a feasible one is
often done by erasing part of the assignment so that the remainder of the assignment is a consistent partial
assignment.

5.2 Conditional propagation on hybrid global constraints
Constraint propagation is the mechanism that controls the interaction of the constraints in order to reduce the
search space. Whenever a constraint updates a domain of a variable, the constraint propagation will wake all
relevant constraints to detect further consequences. This process is repeated until a fixpoint is reached, i.e. no
further inference is possible. Propagation must be combined with search, which is used to assign values to
variables.

Possible events on constraints are only domain reduction events (a variable is fixed, the minimum or the
maximum has changed). In order to achieve on-line optimisation requirements, there is a need to define new
events and mechanisms to control the solving algorithms during the constraint propagation. The conditional
propagation is dependent on several parameters like the depth of the search, the remaining time, the type of
solution found so far. The aim of this contribution is to define new events enabling the search to drive the
algorithmic part of the constraint handling during the constraint propagation.

Constraint handling techniques are a well-known method in CP solvers. Consistency techniques form an
important subclass of constraint handling methods. Techniques like arc-consistency and path-consistency are

used to remove inconsistent values from the variable domains until solutions are found. Constraint handling
techniques in industrial CP system use techniques from Mathematics and Operations Research like techniques
from scheduling and placement to check consistency and to remove inconsistent values from the domain of
variables.

The new events and mechanisms will allow the user to control applied algorithms at any time of the search
during the propagation of the constraints. In consequence, propagation is subject to constraints (time, relaxation,
type of algorithms). Our approach provides a simple yet powerful way to drive the algorithmic part of the
constraint solver to fulfil the requirements of the on-line optimisation. This facility is based on this basic idea: at
any time in the search, a constraint may receive events defining its behaviour when the constraint is awoken
during constraint propagation. These events are raised at any time of the search. We distinguish the following
events:
• Algorithmic: type of algorithm to apply for constraint handling.
• Relaxation: maximum number of acceptable violated constraints or completely deactivate the constraint.
• Time guarantee: the maximum possible amount of time in handling the constraint.

Efficient algorithms: Efficient CP solvers use efficient and sophisticated algorithms to prune the domain of
variable by removing the inconsistent values. The efficiency of such algorithms could be time consuming for on-
line optimisation in some situations. Such algorithms are interesting to be applied in the beginning of the search
to reduce the number of sub-trees to handle or in some parts of the search to prove quickly the inconsistency.

Verification algorithms: These algorithms are very fast to check elementary constraints or some variants of
global constraints. For on-line optimisation, such algorithms are useful especially when the remaining time to
handle the problem is getting smaller.

Light algorithms: These algorithms make a compromise between efficient and verification algorithms. Pruning
algorithms are applied but expensive ones are inhibited. Some complex algorithms used to handle global
constraint are time consuming. For on-line optimisation and in some circumstance they cannot be applied.
Meanwhile, there are different degrees of efficiency. A light version of such algorithms is very appropriate for
on-line optimisation.

Relaxation: Some global constraints can be seen as a set of elementary constraints. For on-line optimisation, it is
not always necessary that all elementary constraints must be satisfied. Partial solutions are acceptable. A global
constraint has and additional argument which is either a domain variable or a constant indicating the number of
possible violated, relaxed, elementary constraints. In the case of a domain variable, it can be subject to
constraint.

Time guarantee
Like the relaxation, at any time of the search, an event can be raised for the constraint to constrain the maximum
amount of time of handling the constraint if it is woken during the constraint propagation. For example when a
variable becomes ground, such event may cause the awakening of thousands of constraints. In order to ease the
implementation of time guarantee, the handling concerns only individual constraint. The time constraint on the
total chain of the constraint propagation is controlled by another event that is not discussed in this section. The
constraint time is well suited for light and hybrid constraints.

Deactivate constraints
This event enables the user to ignore the handling of some constraints during the constraint propagation. For
example, their handling is irrelevant for the current solution.

6 Conclusion
In the EOLE architecture the temporal part is the central one. This component connected with the outside world
uses the different sub-components of the system to satisfy incoming requests. It selects and limits the right
search strategy. This strategy refers to a particular running definition and can take advantage of particular
heuristics. The running strategy uses the model and heuristics. Hence, this selection guided by
prediction/learning capacities uses the whole system. Thanks to the temporal module, the search can be adapted
to incoming requests. The relaxation/hardening of the temporal constraint can bring new selection/limitation of
strategies.
Our current effort is concentrated on the development of the EOLE architecture. The resulting framework will
provide:

• A high-level abstraction to help a technical expert to design hybrid search algorithms.
• Time management facilities to control search algorithms with a limit on the computation time.
In order to demonstrate that, the framework will be tested on several real applications in the Telecom domain.

We thank the reviewers for their very helpful comments.

7 Bibliography
[Applegate & Cook 91] D. Applegate, W. Cook. A computational study of the job-shop scheduling
problem. ORSA Journal On Computing, 3(2):149--156, 1991.

[Beldiceanu et al. 98] Beldiceanu, N., E. Bourreau, H. Simonis, and D. Rivreau (1998). Introduction de
métaheuristiques dans CHIP. In Proc. of MIC-98.

[Bresina 96] Bresina, J. L. (1996). Heuristic-Biased Stochastic Sampling. In Proc. of AAAI-96,
Portland, OR, pp. 271-278.

[Cabon et al. 98] Cabon, B., S. de Givry, and G. Verfaillie (1998, October 26-30). Anytime Lower
Bounds for Constraint Optimization Problems. In Proc. of CP-98, Pisa, Italy, pp. 117-131.

[Caseau & Laburthe 95] Y. Caseau, F. Laburthe. Disjunctive scheduling with task intervals. Technical
report, LIENS, École Normale Supérieure de Paris, France, 1995.

[Caseau & Laburthe 96] Caseau, Y. and F. Laburthe (1996). Introduction to the claire programming
language. Technical Report LIENS technical report 96-15, Ecole Normale Supérieure.

[Caseau et al. 99] Y. Caseau and F. Laburthe and G. Silverstein. A Meta-Heuristic Factory for Vehicle
Routing Problems (Meta-Programming for Meta-Heuristics). In Proc. of CP-99, 144-158, Alexandria,
VA, 1999.

[Cheeseman 91] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are.
In J. Mylopoulos and R. Reiter, editors, Proceedings of IJCAI91, pages 331-337, San Mateo, CA,
1991. Morgan Kaufmann.

[Chu & Wah 91] Chu, L.-C. and B. W. Wah (1991). Optimization in real time. In Proc. of the Twelfth
Real Time Systems Symposium, Washington, D.C., pp. 150-159.

[Cook & Varnell 97] D. J. Cook, R. C Varnell. Maximizing the benefit of parallel search using machine
learning. In Proc. AAAI-97, Providence, RI, USA, 1997.

[Corkill 91] D.D. Corkill. Blackboard Systems. Journal of AI Expert, 6(9), 40-47, 1991.

[Cormen et al. 94] T. Cormen, C. Leiserson, R. Rivest. Introduction à l'algorithmique. Dunod, 1994.

[de Givry et al. 97] S. de Givry, G. Verfaillie and T. Schiex. Bounding the Optimum of Constraint
Optimization Problems. Proc. of CP-97, p. 405-419, Linz, Austria, 1997.

[de Givry 98] de Givry, S. (1998). Algorithmes d'optimisation sous contraintes étudiés dans un cadre
temps réel. Ph. D. thesis, ENSAE, Toulouse, France.

[de Givry et al. 99] S. de Givry, P. Savéant and Jean Jourdan. Optimisation combinatoire en temps
limité: Depth First Branch and Bound adaptatif. Proceedings of JFPLC99, p. 161-178, Lyon, 1999.

[Ginsberg & Harvey 92] Ginsberg, M. and W. Harvey (1992). Iterative broadening. Artificial Intelligence
55, 367-383.

[Gomes et al. 98] C. Gomes, B. Selman, H. Kautz. Boosting Combinatorial Search Through
Randomization. In Proc. of the 15th National Conference on Artificial Intelligence (AAAI-98), pages
431--437, Madison, WI, USA, 1998.

[Harvey 95] Harvey, W. D. (1995, March). NONSYSTEMATIC BACKTRACKING SEARCH. Ph. D.
thesis, Stanford University.

[Harvey & Ginsberg 95] William D. Harvey, Matthew L. Ginsberg. Limited Discrepancy Search. In
Proc. of IJCAI-95, pages 607--613, 1995.

[Hogg et al. 96] T. Hogg, B. A. Huberman, C. P. Williams. Phase transitions and the search problem.
Artificial Intelligence, 81(1-2):1-15, 1996.

[Jussien & Lhomme 00] N. Jussien, O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. In Proc. of the 17th National Conference on Artificial Intelligence (AAAI-00), pages
169--174, Austin, Texas, USA, August 2000.

[Knuth 75] Knuth, D. (1975). Estimating the Efficiency of Backtrack Programs. Mathematics of
Computation 29(129), 121-136.

[Korf 90] Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence 42, 189-211.

[Korf 96] Korf, R. (1996). Improved Limited Discrepancy Search. In Proc. of AAAI-96, Portland, OR,
pp. 286-291.

[Laburthe & Caseau 98] F. Laburthe and Y. Caseau (1998, October 26-30). SaLSA: a language for
search algorithms. In Proc. of CP-98, Pisa, Italy, pp. 310-324.

[Laburthe et al. 00] F. Laburthe and the OCRE project team. CHOCO : implementing a CP kernel. In
Proc. of TRICS’2000, Workshop on techniques for implementing Constraint Programming systems,
Singapore, 2000.

[Meseguer 97] Meseguer, P. (1997). Interleaved depth-first search. In Proc. of IJCAI-97, Nagoya,
Japan, pp. 1382-1387.

[Michel & Van Hentenryck 00] Michel, L. and P. Van Hentenryck (2000). Localizer. Constraints, 5(1-2),
43-84.

[Minton 96] S. Minton. Automatically Configuring Constraint Satisfaction Programs: A Case Study.
Constraints, 1(1), 1996.

[Langley 92] P. Langley. Systematic and Nonsystematic Search Strategies. In Proc. of AIPS, 145-152,
1992.

[Pemberton & Zhang 96] J. C. Pemberton, X. Zhang. Epsilon-transformation: exploiting phase
transitions to solve combinatorial optimization problems. Artificial Intelligence, 81(1-2):297-325, 1996.

[Perron 99] L. Perron. Search Procedures and Parallelism in Constraint Programming. In Proc. of CP-
99, 346-360, Alexandria, VA, 1999.

[Pesant & Gendreau 99] G. Pesant, M. Gendreau. A Constraint Programming Framework for Local
Search Methods. Journal of Heuristics, 1999.

[Prcovic and Neveu 00] Prcovic, N. and B. Neveu (2000). Recherche à focalisation progressive. In
Proc. of JNPC-00, Marseille, France, pp. 191-204.

[Russell & Zilberstein 91] S.J. Russell and S. Zilberstein. Composing Real-Time Systems.
Proceedings of IJCAI-91, p. 212-217, Menlo Park, CA, 1991.

[Selman et al. 92] B. Selman and H. Levesque and D. Mitchell. A New Method for Solving Hard
Satisfiability Problems. Proceedings of AAAI-92, p. 440-446, San Jose, CA, 1992.

[Shaw 98] P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. Proc. of CP-98, LNCS 1520, 1998.

[Van Caneghem 86] M. Van Caneghem. L'Anatomie de Prolog. InterEditions, Paris, 1986.

[Van Hentenryck 00] P. Van Hentenryck. ILOG OPL 3.0, Optimization Programming Language,
Reference Manual. ILOG, Janvier 2000.

[Vasquez & Hao 01] M. Vasquez, J.-K. Hao. A Hybrid Approach for the 0-1 Multidimensional Knapsack
Problem. In Proc. of IJCAI-01, 328-333, 2001.

[Voudouris et al. 01] C. Voudouris, R. Dorne, D. Lesaint and A. Liret. iOpt: A Software Toolkit for
Heuristic Search Methods. In Proc. of CP-01, Paphos, Cyprus, 2001.

[Walsh 97] T. Walsh. Depth-bounded discrepancy search. In Proc. of IJCAI-97, Nagoya, Japan, 1997.

 [Zilberstein 96] S. Zilberstein. Using Anytime Algorithms in Intelligent Systems. AI Magazine,
17(3):73-83, 1996.

[Zhang, 1998] Zhang, W. (1998). Complete anytime beam search. In Proc. of AAAI-98, Madison, WI.

