
RAIRO-Oper. Res. 47 (2013) 91–123 RAIRO Operations Research

DOI: 10.1051/ro/2013030 www.rairo-ro.org

EXPLOITING TREE DECOMPOSITION FOR GUIDING
NEIGHBORHOODS EXPLORATION FOR VNS

Mathieu Fontaine
1
, Samir Loudni

1

and Patrice Boizumault
1

Abstract. Tree decomposition introduced by Robertson and Seymour
aims to decompose a problem into clusters constituting an acyclic
graph. There are works exploiting tree decomposition for complete
search methods. In this paper, we show how tree decomposition can be
used to efficiently guide local search methods that use large neighbor-
hoods like VNS. We propose DGVNS (Decomposition Guided VNS) which
uses the graph of clusters in order to build neighborhood structures en-
abling better diversification and intensification. Second, we introduce
tightness dependent tree decomposition which allows to take advan-
tage of both the structure of the problem and the constraints tightness.
Third, experiments performed on random instances (GRAPH) and real
life instances (CELAR, SPOT5 and tagSNP) show the appropriateness and
the efficiency of our approach. Moreover, we study and discuss the in-
fluence of the width of the tree decomposition on our approach and the
relevance of removing clusters with very few proper variables from the
tree decomposition.

Keywords. Variable neighborhood search, tree decomposition, maxi-
mum cardinality search, cost functions netwok, constraint propagation.

Mathematics Subject Classification. 68T20.

Received January 28, 2013. Accepted February 11, 2013.

1 Université de Caen Basse-Normandie, CNRS, UMR 6072 GREYC, 14032 Caen, France.
samir.loudni@unicaen.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2013

http://dx.doi.org/10.1051/ro/2013030
http://www.rairo-ro.org
http://www.edpsciences.org

92 M. FONTAINE ET AL.

1. Introduction

Many real–life problems, such as frequency assignment [7], or the daily man-
agement of an earth observation satellite [4], are very large and exhibit a highly
structured constraints graph. Exploiting such structural properties may lead these
problems to be tractable.

Tree decomposition introduced by Robertson and Seymour [37] aims to decom-
pose a problem into subproblems (called clusters) constituting an acyclic graph.
Each cluster corresponds to a subset of variables that are strongly connected. As
each subproblem is significantly smaller in size than the original one, it can be
solved more efficiently. The interest for exploiting structural properties of a prob-
lem has been attested in various domains: for checking satisfiability in SAT [36,36],
for solving CSP (CTE [13]), in Bayesian or probabilistic networks (AND/OR graph
search [29]), in relational databases [17,19], for constraint optimization (BTD [43],
Lc-BTD+ [11], RDS-BTD [38], DB [24]). All these proposals exploit tree decomposition
for complete search methods.

For local search methods that use large neighborhoods, as Large Neighborhood
Search (LNS) [41] or Variable Neighborhood Search (VNS) [30], the design of neigh-
borhood structures is crucial, since they provide a way to intensify/diversify the
search in order to explore promising regions of the search space. To the best of our
knowledge, no proposal exploits tree decomposition for such methods.

Cost Functions Network (CFN) [26] is a generic framework used to model
and solve constrained optimization problems which allows to deal with over–
constrained problems as well as preferences between solutions. They can be
solved by local, hybrid or tree search methods. They have been successfully ap-
plied to resource allocation [7], scheduling [4, 5], combinatorial auctions [40], bio–
informatics [39] and probabilistic reasoning [33].

In this paper, we first show how tree decomposition can be used to efficiently
guide the exploration of VNS. We propose DGVNS (Decomposition Guided VNS) [15]
which uses the graph of clusters in order to build neighborhood structures enabling
better diversification and intensification. Second, we introduce tightness dependent
tree decomposition which allows to take advantage of both the structure of the
problem and the constraints tightness. Our idea is to exploit decompositions built
on a subset of constraints of the original problem that may impact the quality of
assignments. Experiments performed on random instances (GRAPH) and real life
instances (CELAR, SPOT5 and tagSNP) show the appropriateness and the efficiency
of our approach. Third, we study and discuss the influence of the width of the
tree decomposition on our approach and the relevance of removing clusters with
very few proper variables from the tree decomposition. This can be achieved by
bounding the maximum number of variables that can be shared between clusters
(i.e. the maximum separator size smax) and by merging clusters with separators
sizes higher than smax (see Sects. 6.4 and 6.5).

Our aim is to characterize a tree decomposition in terms of topological properties
(width, separators size) in order to build more relevant neighborhood structures

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 93

that will improve the diversification of DGVNS. From this study, we show that
our approach is very effective on problems that decompose into weakly connected
clusters of reasonable size. Morover, removing useless clusters (those with very few
proper variables) enables to better refine the relevance of the tree decomposition
and to improve the performances of DGVNS on some instances.

Experiments performed on random instances (GRAPH) and real life instances
(CELAR, SPOT5 and tagSNP) show that exploiting such decompositions enables to
clearly outperform VNS/LDS+CP [28] and ID-Walk [31]. To the best of our knowl-
edge, our proposal constitutes the first attempt to use tree decomposition to effi-
ciently guide the exploration of local search methods that use large neighborhoods
like VNS.

Section 2 introduces the context. Section 3 presents how to exploit tree decom-
position within VNS. Tightness Dependent Tree decomposition is introduced in
Section 4. Section 5 presents the problem instances we used for our experiments.
Section 6 is devoted to experimentations. Finally, we conclude and draw some
perspectives.

2. Definitions and notations

2.1. Cost Functions Network

A Cost Functions Network (CFN) is a pair (X, W) where X = {x1, . . . , xn} is a
set of n variables (with a maximum domain size d) and W is a set of e cost functions
(see Fig. 3). Each variable xi ∈ X has a finite domain Di of values that can be
assigned to it. A value a in Di is denoted (xi, a). For a set of variables S ⊆ X ,
DS denotes the cartesian product of the domains of the variables in S. A complete
assignment t=(a1, ..., an) is an assignment of all variables; on the contrary, it will
be called a partial assignment. For a given complete assignment t, t[S] denotes the
projection of t over S. A cost function wS ∈ W , with scope S ⊆ X , is a function
wS : DS �→ [0, k�] where , k� is a maximum integer cost (finite or not) used to
represent forbidden assignments (expressing hard constraints). Costs are combined
using the bounded addition defined by α⊕β = min(k�, α +β). Figure 1 shows an
example of a CFN. Tuples with non zero costs are in bold.

The central problem in CFN is to find a complete assignment t minimizing
⊕wS∈W wS(t[S]). This optimization problem has an associated NP-complete de-
cision problem and restrictions to Boolean variables and binary constraints are
known to be APX–hard [32].

2.2. Tree decomposition

The constraints graph of a CFN is a graph G=(X ,E) with one vertex for each
variable and one edge (u, v) for every cost function wS ∈ W , such that u, v ∈ S.

Definition 2.1. A tree decomposition [37] of G=(X ,E) is a pair (CT , T) where:

• T = (I, A) is a tree with nodes set I and edges set A,

94 M. FONTAINE ET AL.

A B E wA,B,E

a a b 10
a b b 10
a a c 10
a b c 100
b a b 500

b b b 200
b a c 0
b b c 0

t(wA,B,E) = 0.75

A C wA,C

a a 0
a c 0
b a 1000
b c 0

t(wA,C) = 0.25

C D wC,D

a b 10
a c 0
c b 120
c c 350

t(wC,D) = 0.75

B D wB,D

a b 1000
a c 0
b b 0
b c 10

t(wB,D) = 0.5

D F wD,F

b a 1000
b c 1000
c a 1000
c c 0

t(wD,F) = 0.75

Figure 1. Example of a CFN with six variables X = {A, B, C, D,
E, F}, having as domains DA = DB = {a, b}, DC = DF = {a, c}
and DD = DE = {b, c}. There are one ternary cost function
wA,B,E and four binary cost functions.

• CT = {Ci | i ∈ I} is a family of subsets of X (called clusters) such that:
– ∪i∈I Ci = X ,
– ∀ (u, v) ∈ E, ∃Ci ∈ CT s.t. u, v ∈ Ci,
– ∀ i, j, k ∈ I, if j is on the path from i to k in T , then Ci ∩ Ck ⊆ Cj .

Definition 2.2. The intersection of two clusters Ci and Cj is called a separa-
tor, and noted sep(Ci, Cj). Two clusters are adjacent if they share at least one
variable. We denote by smax the maximum size of the separators for a tree de-
composition (CT , T). Variables belonging to one, and only one, cluster are called
proper variables.

Definition 2.3. Let Ci be a cluster of CT . The cluster degree of Ci is the number
of clusters connected (i.e. adjacent) to it.

Definition 2.4. A graph of clusters for a tree decomposition (CT , T) is an undi-
rected graph GT = (CT , ET) that has a vertex for each cluster Ci ∈ CT , and there
is an edge (Ci, Cj) ∈ ET when sep(Ci, Cj)�= ∅. The edges are labeled by the shared
variables.

Definition 2.5. The width of a tree decomposition (CT , T), is defined as
w− = maxi∈I(|Ci|−1). The treewidth tw(G) of a graph G is defined as the smallest
width of all possible tree decompositions of G.

As finding an optimal tree decomposition is NP–hard [2], approximate tree
decompositions using triangulation of a given graph are often exploited. Several
effective heuristics that rely on the notion of graph triangulation have been pro-
posed (see [25] for an introduction to triangulated graphs). Such heuristics provide
upper bounds for the treewidth.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 95

A

B C

D

E

F

(a) Initial graph G.

A

B C

D

E

F

(b) Example of a triangulation of G.

A,B,C

B,C,D

A,B,E

D,F

B,C

A,B

D

B

(c) Maximal cliques corresponding to the
triangulated graph (graph of clusters).

A,B,C

B,C,D A,B,E

D,F

B,C A,B

D

(d) Tree decomposition of G with
width 2.

Figure 2. Steps for computing a tree decomposition of a graph G.

2.3. Computing a tree decomposition

In this section, we present a tree decomposition method that relies on the con-
cept of graph triangulation.

Definition 2.6. A graph is chordal (or triangulated) if all cycles of length no
less than four have a chord, i.e. an edge connecting two non-adjacent vertices of
the cycle.

Theorem 2.7 [16]. Let G=(V ,E) be an undirected graph, and let K be the set of
maximal cliques of G, with Kv the set of all maximal cliques that contain vertex
v of G. The following statements are equivalent:

i) G is chordal;
ii) There exists a clique tree T = (K,A) whose vertex set is the set of maximal

cliques of G such that each of the induced subgraphs T [Kv] is connected.

The link between triangulated graphs and tree decompositions is obvious. In-
deed, if G is a chordal graph, then any clique tree of G is also a tree decomposition
of G. However, the converse is not necessarily true. It follows from this that the
set of maximal2 cliques of G corresponds to the family of subsets associated with

2A clique is maximal iff it is not included in another clique.

96 M. FONTAINE ET AL.

a tree decomposition. Computing a tree decomposition for a graph is equivalent
to finding a triangulation of this graph, i.e. finding a suitable set of edges to add
to the graph to obtain a chordal graph [22].

Figure 2 illustrates the three steps for computing a tree decomposition for a
graph G associated to the CFN of Figure 1 (see Part a). First, triangulation is
performed on G by adding edge BC (see Part b). Then, maximal cliques in the
chordal graph are determined in order to build the graph of clusters (see Part c).
Finally, tree decomposition is achieved (see Part d).

In this paper, we have used the heuristic called Maximum Cardinality Search
(MCS) [42]. This heuristic provides a good compromise between the width of the
tree decomposition and the time required to compute it [22].

Algorithm 1: VNS/LDS+CP
function VNS/LDS+CP(X, W, kinit, kmax, δmax) ;

begin
S ← genInitSol() ;1

k ← kinit ;2

while (k < kmax) ∧ (notT imeOut) do3

Xun ← Hneighborhood(X, Nk, S) ;4

A ← S\{(xi, a) | xi ∈ Xun} ;5

S′ ← Rebuild(A,Xun, δmax, f(S), S) ;6

NeighbourhoodChange(S, S′, k);7

return S ;8

end
procedure NeighbourhoodChange (S, S′, k);
begin

if f(S′) < f(S) then9

S ← S′ ;10

k ← kinit ;11

else k ← k + 1 ;12

return ;13

end

2.4. VNS/LDS+CP

VNS/LDS+CP [28] is a local search method based on the variable neighbourhood
decomposition search (VNDS3) method [20]. Neighborhoods are obtained by unfix-
ing a part of the current solution according to a neighborhood heuristic. Then the
exploration of the search space, related to the unfixed part of the current solution,
is performed by a partial tree search LDS (Limited Discrepancy Search, [21]) with
Constraint Propagation (CP).

3VNDS extends the basic VNS into a two-level VNS scheme based upon decomposition of the
problem.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 97

Algorithm 1 shows the pseudo–code of VNS/LDS+CP. Let X be the set of vari-
ables, and let Nk be the neighborhood structure of dimension k; Nk denotes the set
of all subsets of k variables among X . VNS/LDS+CP starts from an initial solution
S which is randomly generated (line 1). A subset of k variables Xun is selected in
X by the neighborhood heuristic Hneighborhood (line 4). A partial assignment A
is generated from the current solution S by unassigning the k selected variables;
the (n − k) non–selected variables keep their current value in S (line 5). Then,
unassigned variables are rebuilt (line 6) by a partial tree search (LDS) combined
with Constraint Propagation (CP). Pruning is achieved using lower bounds pro-
vided by maintaining consistencies such as AC* [27], FDAC* [26], EDAC* [10]
and VAC [9]. In our case, we used EDAC.

If LDS+CP finds a solution of better quality S′ in the neighborhood of S (line 9),
then S′ becomes the current solution and k is reset to kinit (lines 10–11). Other-
wise, VNS/LDS+CP looks for improvements in Nk+1 (neighborhood structure where
(k + 1) variables of X will be unassigned (line 12)). This treatment is achieved by
procedure NeighborhoodChange (S, S′, k) (line 7). Indeed, the higher the dimen-
sion of the neighborhood, the larger the search space and more likely to contain
better solutions than the current one. However, since the size of neighborhoods
may quickly grow, finding the best neighbor may require too much effort. That
is why, in order to efficiently explore parts of the search space, we use LDS+CP, a
partial tree search combined with constraint propagation. The search stops when
it reaches the maximal dimension size allowed or the T imeOut (line 3).

2.5. Neighborhood heuristics

The neighborhood heuristic used to select variables to be unassigned is crucial,
since its drives VNDS to explore regions of the search space in order to improve
the current solution. However, defining efficient heuristics is difficult and requires
deep specific knowledge of the problem. There exist very few generic neighborhood
heuristics. We have selected ConflictVar because it is one of the simplest and
popular ones: for a given dimension of neighborhood k, ConflictVar randomly
selects k variables to unassign among conflicted ones4. Such a heuristic which is
mainly based on random choices, allows to diversify the search and to quickly
escape from local minima. In [34], the authors have proposed PGLNS which uses
propagation to define generic neighborhood heuristics (see [34] for more details).

3. Intensification/diversification using tree

decomposition

In this section, we present the first contribution of our paper: DGVNS (Decompo-
sition Guided VNS) [15] which uses the graph of clusters in order to build neighbor-
hood structures enabling a better diversification and a better intensification than

4A variable is said to be conflicted if it occurs in at least one unsatisfied constraint.

98 M. FONTAINE ET AL.

VNS/LDS+CP. For both DGVNS and VNS/LDS+CP, the rebuilding step is performed
using LDS+CP, but neighborhoods are managed in a different way in order to take
advantage of the graph of clusters.

Instead of the neighborhood structures Nk used by VNS/LDS+CP (see Sect. 2.4),
DGVNS uses neighborhood structures Nk,i, where k is the neighborhood dimension
and Ci is the cluster where the variables will be selected from. Algorithm 2 depicts
the pseudo–code of DGVNS.

Algorithm 2: DGVNS
function DGVNS(X, W, kinit, kmax, δmax);
begin

let G be the constraints graph of (X, W) ;1

let (CT , T) be a tree decomposition of G ;2

let CT = {C1, C2, ..., Cp} ;
S ← genInitSol() ;3

k ← kinit ;4

i← 1 ;5

while (k < kmax) ∧ (notT imeOut) do6

Cs ← CompleteCluster(Ci, k) ;7

Xun ← Hneighborhood(Cs, Nk,i, S) ;8

A ← S\{(xi, a) | xi ∈ Xun} ;9

S′ ← Rebuild(A,Xun, δmax, f(S), S) ;10

NeighbourhoodChange(S, S′, k, i);11

return S ;12

end
procedure NeighbourhoodChange (S, S′, k, i);
begin

if f(S′) < f(S) then13

S ← S′ ;14

k ← kinit, i← succ(i) ;15

else k ← k + 1 ; i← succ(i) ;16

return ;17

end

DGVNS favors moves on regions that are closely linked. The concept of
cluster embodies this criterion, because of its size (smaller than the original prob-
lem), and by the strong connection of the variables it contains. The set of candi-
date variables Cs to be unassigned are selected in a same cluster Ci. If (k > |Ci|),
then we complete Cs by adding the clusters Cj adjacent to Ci in order to take
into account the topology of the graph of clusters. This treatment is achieved by
function CompleteCluster(Ci, k) (line 7). So the neighborhood structure Nk,i is
constituted by the set of all subsets of k variables among Cs (line 8).

The aim of diversification is to sample a large number of different regions to
ensure that the search space has been properly explored, and to locate the region
containing the global optimum. To achieve a better diversification, we consider

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 99

successively all the Ci. This treatment is achieved by procedure Neighbourhood-
Change(S, S′, k, i) (line 11).

Let p the total number of clusters, succ a successor function5, and Nk,i the cur-
rent neighborhood structure: if LDS+CP finds a solution of better quality S′ in the
neighborhood of S (line 13), then S′ becomes the current solution (line 14), k is re-
set to kinit (line 15), and the next cluster is considered (line 15). Otherwise, DGVNS
looks for improvements in N(k+1),succ(i) (neighborhood structure where (k + 1)
variables of Cs will be unassigned (line 16)). The search stops when it reaches the
maximal dimension size allowed or the T imeOut (line 6).

First, diversification performed by moving from cluster Ci to cluster Csucc(i)

is necessary. Experiments we performed have shown that remaining in the same
cluster leads to lower ameliorations: selecting a new cluster enables to improve the
quality of the solution by visiting new parts of the search space. Second, when a
local minimum is found in the current neighborhood, moving from k to (k+1) will
also provide some diversification by enlarging the neighborhood size.

The aim of intensification is to find the best solution contained within a rel-
atively small region. This is performed by rebuilding the partial solutions using
LDS+CP and by resetting the size of the neighborhood to kinit at each improvement.
This will accelerate the search for complete assignments in small neighborhoods.

4. Tightness dependent tree decomposition

Optimization problems often involve constraints much harder to satisfy than
others. Indeed, the higher the tightness of a constraint, the more difficult it is
to satisfy it. So, removing constraints having a low tightness will ensure that the
clusters of a decomposition are built taking account constraints that can have a
great impact on the quality of assignments, while keeping the resulting constraints
graph enough dense. Moreover, tight constraints enable a more efficient filtering
on the set of variables to be selected in a cluster.

In this section, we show how to exploit constraints tightness to build more
relevant tree decompositions.

Definition 4.1. Let wS be a cost function and DS the Cartesian product of the
domains of the variables in S. The tightness t(wS) of wS is

t(wS) =
|{t |wS(t) > 0, t ∈ DS}|

|DS| ·

This definition of tightness does not take into account costs, since t(wS) depends
only on the number of tuples with non zero cost in the table of wS (see further
works, Sect. 7).

100 M. FONTAINE ET AL.

A

B C

D

E

F

(a) Initial graph G.

B,D

A,B,E

D,CD,F

B

DD

(b) Tree decomposition of G

after having removed edge AC.

Figure 3. TD–tree decomposition of a graph G for λ = 0.3.

4.1. Computing TD–tree decomposition

The Tightness Dependent (TD) tree decomposition of a constraints graph G for
a threshold value (noted λ) is performed in two steps:

1. All cost functions of tightness lower than λ are removed from G leading to
subgraph G′.

2. Tree decomposition is applied to subgraph G′.

Figure 3 depicts the TD–tree decomposition of graph G for a threshold λ set
to 0.3. First, the tightness t(wS) of each cost function wS is determined (see
Fig. 1). Second, wA,C is removed since its tightness is lower than λ. Finally, tree
decomposition is applied to the remaining subgraph (see Part (b)).

Figure 4 shows the influence of the threshold λ on the Scen06 decomposition.
Column 1 gives the different values of λ. Column 2 indicates the percentage of
dropped constraints. Column 3 denotes the total number of clusters. Columns 4–
12 respectively report, for each of the three parameters cluster size, cluster degree
(cf. Def. 2.3) and separator size, their minimal, average and maximal value. Finally,
the last column indicates the total number of separators. The tree decomposition
performed on the initial constraints graph corresponds to λ = 0.

For 0.2 ≤ λ ≤ 0.5, the TD–tree decomposition often yields a large number of
clusters of relatively small size, while still retaining most of the important con-
straints of the initial problem. Moreover, clusters have (on average) a higher de-
gree6 (i.e. a higher connectivity) than those obtained with λ = 0. This highlights
the interest and the importance of the TD–tree decomposition. However, for high
values of λ (λ ≥ 0.6), TD–tree decomposition is not pertinent since too many
constraints would be removed, leading to much more isolated clusters of negligible

5if i < p then succ(i) = i + 1 else succ(p) = 1.
6Removing constraints from the initial constraint graph G enables to split many clusters into

new clusters of smaller sizes, thus increasing the degree of all the clusters sharing variables with
these new clusters.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 101

λ % dropped |CT | Cluster size Cluster degree Separator size

min. avg. max. min. avg. max. min. avg. max. nb

0 0 55 2 4.9 12 1 9.6 25 1 1.77 8 266

0.1 1 59 2 5.1 11 1 10.27 26 1 1.9 10 303

0.2 3 61 2 4.9 11 1 10.06 26 1 1.89 10 307

0.3 5 61 2 4.91 11 1 10.06 26 1 1.8 10 307

0.4 8 60 1 4.75 11 0 7.8 21 1 1.9 10 234

0.5 14 56 1 4.3 11 0 5.57 14 1 1.75 9 156

0.6 28 65 1 3.93 10 0 5.29 14 1 1.93 9 172

0.7 53 74 1 2.98 10 0 4.10 10 1 1.61 6 152

0.8 54 72 1 2.97 10 0 3.63 9 1 1.64 6 131

0.9 76 80 1 1.85 9 0 1.6 7 1 1.18 5 64

1 100 100 1 1 1 0 0 0 0 0 0 0

Figure 4. TD–tree decompositions of Scen06.

size. Results obtained for other CELAR instances are not reported in this paper,
since they are similar.

Moreover, for SPOT5 instances, TD–tree decomposition is pertinent for
0.1 ≤ λ ≤ 0.3 (see Sect. 6.3 for more details). Results for GRAPH instances
are given Section 6.4. Finally, TD–tree decomposition has not been applied on the
tagSNP problem, since all the considered instances contain cost functions with the
same tightness.

4.2. Setting the value of parameter λ

Determining the best value of parameter λ is problem–dependent. Our approach
determines empirically the best setting of λ by evaluating several possible values
ranging from 0.1 to 0.6. Values greater than 0.6 lead to much more disconnected
clusters. However, despite its empirical character, our approach remains applicable
and does not require extensive knowledge as well as a lot of experiments (for
effective tuning), since parameter λ conveys a certain semantic for which its setting
can be readily understandable.

5. Benchmark problems

Experiments have been performed on instances of four different problems.

RLFAP instances: The CELAR (Centre d’Electronique de l’Armement) has made
available a set of instances for the Radio Link Frequency Assignment Problem
(RLFAP) [7]. They consist in assigning a limited number of frequencies to a set of
radio links defined between pairs of sites, in order to minimize interferences due to
the re-use of frequencies. We report experiments on the most difficult instances:
Scen06, Scen07 and Scen08.

GRAPH instances: The GRAPH generator (Generating Radio link frequency Assign-
ment Problems Heuristically) has been developed by the CALMA project [44] in
order to provide structured random instances close to RLFAP ones.

102 M. FONTAINE ET AL.

SPOT5 instances: The daily management of an earth observation satellite such as
SPOT5 consists in selecting a subset of candidate photographs to fit physical lim-
itations and maximize the importance of the selected photographs [4]. We report
experiments on seven instances from those without hard capacity constraint.

tagSNP instances: A Single Nucleotide Polymorphism (SNP) is a DNA sequence
variation occurring when a single nucleotide - A, T, C or G - in the genome differs
between members of a biological species or paired chromosomes in an individual [8].
SNPs act as biological markers that may help predict risk of developing particular
diseases. The tagSNP problem consists in selecting a small subset of SNPs, called
tagSNPs, that captures most of the genetic information.

A correlation measure r2 between any pair of SNPs has been introduced in [14].
A tagSNP pi is said to be representative of another SNP pj if pi and pj are consid-
ered as enough correlated (i.e. r2(pi, pj) ≥ r0, where r0 is a minimum threshold).
The tagSNP problem consists in selecting a minimum number of SNPs such that
all SNPs are covered. Other criteria [35,38] can also be considered: (i) maximizing
the weighted coverage sum of unselected SNPs and (ii) maximizing the dispersion
between selected SNPs (i.e. tagSNPs).

This problem is modeled as a binary CFN (see Sect. 2.1). Two variables is and
ir are associated to each SNP pi: is is a boolean variable indicating whether pi is a
tagSNP; ir is a variable representing the tagSNP covering pi (the finite domain of
ri is the set of neighbors of pi together with pi itself). For each pair of SNPs (pi, pj)
s.t. r2(pi, pj)≥r0, the following (hard) constraints are enforced: is ⇒ (ir = pi) and
(ir = pj) ⇒ js. Such constraints are encoded as binary cost functions (with 0 or
k� costs). Preferences (i) and (ii) are respectively captured by unary and binary
cost functions (see [38] for more details).

We have selected the tagSNP problem for two main reasons. First, the tagSNP
problem is known to be very hard to solve, due to its close relation to the set
covering problem (NP–hard). Second, the instances are reasonably large: up to
n = 1550 variables with max domain size d ranging from 30 to 266, and up
to e = 250 000 cost functions. We report experiments on thirteen challenging
instances derived from human chromosome–1–data7 with r0 = 0.5. Eight instances
are medium-sized, while the five other instances are large ones.

6. Experiments

6.1. Experimental protocol

Each instance has been solved by each method, with a discrepancy of 3 for LDS,
which is the best value found on RLFAP instances (see [28]). kmin and kmax have
been respectively set to 4 and n (the total number of variables), and T imeOut
fixed to 3600 s, except for tagSNP instances, where T imeOut = 2 h (resp. 4 h)
for medium-sized (resp. large) instances. A set of 50 runs per instance has been

7http://www.costfunction.org/benchmark

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 103

Instance Method Succ. Time Avg

Scen06 DGVNS 50/50 112 3,389

n = 100, d = 44 TDGVNS-0.2 50/50 58 3,389
e = 1, 222 VNS/LDS+CP 15/50 83 3,399

S∗ = 3, 389 ID-Walk NA 840 3,447 (3,389)

Scen07 DGVNS 40/50 317 345,614

n = 200, d = 44 TDGVNS-0.4 49/50 221 343,600
e = 2, 665 VNS/LDS+CP 1/50 461 355,982

S∗ = 343, 592 ID-Walk NA 360 373,334 (343,998)

Scen08 DGVNS 3/50 1,811 275

n = 458, d = 44, TDGNVS-0.5 9/50 442 272
e = 5, 286 VNS/LDS+CP 0/50 - 394 (357)

S∗ = 262 ID-Walk NA 3,000 291 (267)

Figure 5. Comparing the four methods on RLFAP instances.

performed on an AMD opteron with 2.1 GHz CPU and 256 GB of RAM. All search
strategies have been implemented in C++ using the library toulbar28.

For each instance and each method, we report the number of successful runs to
reach the optimum, “succ. runs/total runs”, the average CPU time (in seconds) for
the successful runs, the average cost over the 50 runs and the best cost (between
brackets) for unsuccessful runs. We also give the mean performance profiles of
the evolution of the solution quality over time (see Figs. 15, 16, 17, 18 and 19 in
Appendix B)

First, we compare DGVNS with VNS/LDS+CP and ID-Walk [31], one of the most
performing local search methods on RLFAP instances (see Sect. 6.2). Second, we
compare DGVNS with its TD–tree decomposition version (namely TDGVNS-λ); com-
parisons are performed with different values of λ (see Sect. 6.3). Third, we study
and discuss the influence of the width of the tree decomposition and the relevance
of removing clusters with very few proper variables from the tree decomposition.
This can be achieved by bounding the maximum number of variables that can be
shared between clusters (i.e. the maximum separator size smax) and by merging
clusters with separators sizes higher than smax (see Sects. 6.4 and 6.5). Our aim
is to characterize a tree decomposition in terms of topological properties (width,
separators size) in order to build more relevant neighborhood structures that will
improve the diversification of DGVNS.

Finally, note that comparing CPU times for our approach with those for com-
plete methods that exploit tree decompositions would be rather difficult. In fact,
all reported CPU times include both finding an optimal solution and proving its
optimality. These two tasks take generally about a few days [38].

8http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

104 M. FONTAINE ET AL.

Instance Method Succ. Time Avg

#408 DGVNS 49/50 117 6,228

n = 200, d = 4 TDGVNS-0.1 50/50 72 6,228
e = 2, 232 VNS/LDS+CP 26/50 149 6,228

S∗ = 6, 228 ID-Walk 50/50 3 6,228

#412 DGVNS 36/50 84 32,381

n = 300, d = 4 TDGVNS-0.1 38/50 71 32,381
e = 4, 348 VNS/LDS+CP 32/50 130 32,381

S∗ = 32, 381 ID-Walk 10/50 2102 3,238

#414 DGVNS 38/50 554 38,478

n = 364, d = 4 SDGNVS-0.1 42/50 430 38,478
e = 10, 108 VNS/LDS+CP 12/50 434 38,481

S∗ = 38, 478 ID-Walk 0/50 - 38,481

#505 DGVNS 50/50 63 21,253

n = 240, d = 4 TDGVNS-0.1 48/50 92 21,253
e = 2, 242 VNS/LDS+CP 41/50 143 21,253

S∗ = 21, 253 ID-Walk 50/50 358 21,253

#507 DGVNS 33/50 71 27,390

n = 311, d = 4 TDGVNS-0.1 45/50 62 27,390
e = 5, 732 VNS/LDS+CP 11/50 232 27,391

S∗ = 27, 390 ID-Walk 7/50 1,862 27,391

#509 DGVNS 40/50 265 36,446
n = 348, d = 4 TDGVNS-0.2 39/50 313 36,446
e = 8, 624 VNS/LDS+CP 12/50 598 36,448

S∗ = 36, 446 ID-Walk 0/50 - 36,450

Figure 6. Comparing the four methods on SPOT5 instances.

6.2. Contribution of the tree decomposition

6.2.1. RLFAP instances

First, DGVNS clearly outperforms VNS/LDS+CP on RLFAP instances (see Fig. 5).
DGVNS reaches the optimum with success rates of 100%, 80% and 6% on Scen06,
Scen07 and Scen08 respectively. VNS/LDS+CP gets successful runs only very few
times on the first two instances, and is not able to find the optimum for Scen08:
the best solution found has a cost 357.

Second, DGVNS clearly outperforms ID-Walk9, particularly on the two challenging
instances Scen07 and Scen08 (see Fig. 5). For Scen07 (resp. Scen08), DGVNS obtains
solutions with a mean deviation (percentage deviation from the optimum) of 0.55%
(resp. 5%) above the optimum, while ID-Walk only finds solutions whose average
costs are respectively 8% and 11% above the optimum.

9Results for RLFAP instances are taken from [31]. The number of successful runs and the com-
puting time are not available (NA in Fig. 5), Thus, we only report the time per trial, the average
cost over 10 trials and the best cost found. For other instances (SPOT5, GRAPH and tagSNP) results
were obtained using ID-Walk in the library INCOP [1], with the same experimental protocol as
described above.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 105

6.2.2. SPOT5 instances

This trend is confirmed by SPOT5 instances (see Fig. 6), where DGVNS outper-
forms VNS/LDS+CP, both in terms of success rates (with a gain of 40% on average)
and CPU times. Indeed, DGVNS reaches the optimum for each run on two instances
(#408 and #505). For the other instances (except for instance #507), the success
rate is at least 70%. VNS/LDS+CP gets an average success rate of 67% on instances
#408 and #505, while for the other instances (except on #412), the success rate
is at most 24%.

Once again, DGVNS clearly dominates ID-Walk (except for instance #408) (see
Fig. 6), particularly on the two large instances #414 and #509 where ID-Walk
does not reach the optimum. For these two instances, the best solution found has
a cost 38 479 and 36 447 respectively.

6.2.3. tagSNP instances

Figure 7 compares DGVNS with VNS/LDS+CP on tagSNP instances. ID-Walk ex-
hibited poor performances that are not reported here. On medium-sized instances,
DGVNS clearly outperforms VNS/LDS+CP. DGVNS reaches the optimum for each of the
50 runs (i.e. success rates of 100%). VNS/LDS+CP gets the same success rates on
three instances (#6835, #15 757 and #16 706), but DGVNS is on average 3.6 times
faster. On the two instances #3792 and #8956, VNS/LDS+CP gets successful runs
only very few times (i.e. success rates of 30% and 24% respectively). For compar-
ison, DGVNS improves very significantly this success rate about 70% (from 30% to
100%) for instance #3792 and 76% (from 24% to 100%) for instance #8956. For
the other instances, VNS/LDS+CP remains less competitive both in terms of success
rates and CPU times.

On large instances, DGVNS clearly dominates VNS/LDS+CP (see Fig. 7), partic-
ularly on the three instances #10 442, #14 226 and #17 034, where VNS/LDS+CP
is not able to find the optimum. For these three instances, the best costs found
(between brackets) are about 4% above the optimum. On the two remaining in-
stances, even though no method reaches the optimum, DGVNS performs better than
VNS/LDS+CP on instance #9150 and worse on #6858. For instance #9150, the de-
viation (resp. mean deviation) above the optimum of the best (resp. average) cost
found decreases from 19% to 0.0003% (resp. from 22% to 3%). For instance #6858,
VNS/LDS+CP obtains the lowest cost, and the deviation above the optimum of the
best solution found decreases from 33% to 16%. Let us note that the two methods
are quite similar on average.

6.2.4. Performance profiles

Figures 15, 16, Figures 17 and 18 (see Appendix B) compare performance pro-
files of DGVNS and VNS/LDS+CP.

For RLFAP and SPOT5 instances, DGVNS clearly outperforms VNS/LDS+CP (except
for instance #505). From an anytime point of view, two important observations can
be made. First, the curve for DGVNS shows a significant steep initial slope. Second,

106 M. FONTAINE ET AL.

Instance Method Succ. Time Avg

#3792, n = 528, d = 59, e = 12, 084 DGVNS 50/50 954 6,359,805
S∗ = 6, 359, 805 VNS/LDS+CP 15/50 2,806 6,359,856

#4449, n = 464, d = 64, e = 12, 540 DGVNS 50/50 665 5,094,256
S∗ = 5, 094, 256 VNS/LDS+CP 48/50 2,616 5,094256

#6835, n = 496, d = 90, e = 18, 003 DGVNS 50/50 2,409 4,571,108
S∗ = 4, 571, 108 VNS/LDS+CP 50/50 7,095 4,571,108

#8956, n = 486, d = 106, e = 20, 832 DGVNS 50/50 4,911 6,660,308

S∗ = 6, 660, 308 VNS/LDS+CP 12/50 8,665 6,660327

#9319, n = 562, d = 58, e = 14, 811 DGVNS 50/50 788 6,477,229
S∗ = 6, 477, 229 VNS/LDS+CP 47/50 2,434 6,477,229

#15757, n = 342, d = 47, e = 5, 091 DGVNS 50/50 60 2,278,611
S∗ = 2, 278, 611 VNS/LDS+CP 50/50 229 2,278,611

#16421, n = 404, d = 75, e = 12, 138 DGVNS 50/50 2,673 3,436,849
S∗ = 3, 436, 849 VNS/LDS+CP 37/50 3,146 3,436,924

#16706, n = 438, d = 30, e = 6, 321 DGVNS 50/50 153 2,632,310

S∗ = 2, 632, 310 VNS/LDS+CP 50/50 629 2,632,310

#6858, n = 992, d = 260, e = 103, 056 DGVNS 0/50 - 26,882,588 (26,879,268)
S∗ = 20, 162, 249 VNS/LDS+CP 0/50 - 26,815,733 (23,524,452)

#9150, n = 13, 52, d = 121, e = 44, 217 DGVNS 0/50 - 44,754,916 (43,302,028)

S∗ = 43, 301, 891 VNS/LDS+CP 0/50 - 52,989,981 (51,677,673)

#10442, n = 908, d = 76, e = 28, 554 DGVNS 50/50 4,552 21,591,913

S∗ = 21, 591, 913 VNS/LDS+CP 0/50 - 22,778,811 (22,490,938)

#14226, n = 1, 058, d = 95, e = 36, 801 DGVNS 46/50 7,606 25,688,751

S∗ = 25, 665, 437 VNS/LDS+CP 0/50 - 28,299,904 (26,830,579)

#17034, n = 1142, d = 123, e = 47, 967 DGVNS 41/50 8,900 38,563,232
S∗ = 38, 318, 224 VNS/LDS+CP 0/50 - 41,352,709 (39,850,974)

Figure 7. Comparing DGVNS and VNS/LDS+CP on tagSNP instances.

the decelerating of the curve for VNS/LDS+CP is very important as compared to
DGVNS.

For tagSNP instances (Figs. 17 and 18) the same observations can be made,
particularly on large instances, where the decelerating of the curve for VNS/LDS+CP
is greatly amplified as compared to DGVNS. Moreover, the improvement speed of
the quality of solutions provided by DGVNS, with respect to the initial cost, is
very important. For comparison, VNS/LDS+CP needs much more CPU time and
much more moves to reach the same improvement in quality. This confirms the
importance of exploiting tree decomposition for guiding VNS.

6.2.5. Synthesis

These experiments clearly demonstrate the efficiency of our approach compared
with both VNS/LDS+CP and ID-Walk on structured problems like RLFAP and SPOT5.
For tagSNP instances, DGVNS clearly outperforms VNS/LDS+CP, particularly on large
instances, where VNS/LDS+CP is not able to reach the optimum. Results for GRAPH
are given in Figure 10, Section 6.4.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 107

6.3. Contribution of tightness dependent tree decomposition

Figures 5 and 6 enable to compare TDGVNS (DGVNS applied to TD–tree decompo-
sition) with DGVNS. Only results for the best setting for λ are reported. We have not
applied TDGVNS on the tagSNP problem, since all the instances considered contain
cost functions with the same tightness. Results for GRAPH are given in Figure 11,
Section 6.4.

6.3.1. Comparing TDGVNS with DGVNS

On RLFAP instances (see Fig. 5), the impact of the TD–tree decomposition is very
significant, particularly on Scen07 and Scen08, for which very large improvements
are gained by TDGVNS. For Scen07, TDGVNS improves significantly the success rate
about 18% (from 80% to 98%) as well as the mean deviation above the optimum
(from 0.55% to 0.002%). For Scen08, the success rate is improved about 12% (from
6% to 18%), the mean deviation decreases from 5% to 3.80% and TDGVNS is 4 times
faster than DGVNS. For Scen06, TDGVNS is 2 times faster than DGVNS.

The same trend is confirmed by SPOT5 instances (see Fig. 6), where TDGVNS is
very effective. On three large instances (#412, #414 and #507), TDGVNS improves
on average the success rate as well as the average CPU time about 12% and 25%
respectively. For the other instances, both methods perform similarly, however
TDGVNS is at least 1.5 faster than DGVNS. For performance profiles (Figs. 15 and 16),
similar behaviors can be observed (except for Scen06 and instance #505), that is
TDGVNS is always better than DGVNS.

6.3.2. Comparing various values of λ for RLFAP and SPOT5 instances

Figure 8 gives the impact of λ on the TD–tree decomposition. The best value
for this parameter depends on the instance. Experiments show that, for RLFAP
instances, values of λ ranging from 0.2 to 0.5 are the most appropriate. For SPOT5
instances, best results are obtained with λ ranging from 0.1 to 0.3. In fact, these
instances seem highly constrained since only a small number of candidate pho-
tographs are selected in an optimal solution. λ = 0.3 (resp. 0.1) provides a more
homogeneous behavior among the RLFAP (resp. SPOT5) instances. Finally, for RLFAP
(resp. SPOT5) instances, values of λ greater than 0.6 (resp. 0.4) did not pay off since
too many constraints would be removed. So, results are not reported here.

6.3.3. Synthesis

These experiments clearly demonstrate the relevance of TD–tree decomposition
to design appropriate neighborhood structures. Moreover, for RLFAP instances,
values of λ ranging from 0.2 to 0.5 are the most appropriate, while for SPOT5
instances, best results are obtained with λ ranging from 0.1 to 0.3. Results for
GRAPH are given in Figure 11, Section 6.4.

108 M. FONTAINE ET AL.

Instance λ Succ. Time Avg

Scen06 0.2 50/50 58 3,389

0.3 50/50 61 3,389

0.4 50/50 110 3,389
0.5 49/50 122 3,389

Scen07 0.2 45/50 271 344,603

0.3 47/50 229 344,198

0.4 49/50 221 343,600
0.5 45/50 244 344,603

Scen08 0.2 7/50 327 273
0.3 5/50 323 273

0.4 6/50 344 274
0.5 9/50 442 272

#408 0.1 50/50 72 6,228
0.2 44/50 90 6,228

0.3 10/50 105 6,229

0.4 11/50 129 6,229

Instance λ Succ. Time Avg

#412 0.1 38/50 71 32,381

0.2 32/50 135 32,384
0.3 8/50 1337 32,384

0.4 2/50 1290 32,383

#414 0.1 42/50 430 38,478

0.2 38/50 471 38,478
0.3 4/50 704 38,480

0.4 1/50 747 38,480

#505 0.1 48/50 92 21,253

0.2 18/50 148 21,253
0.3 4/50 319 21,256

0.4 1/50 436 21,256

#507 0.1 45/50 62 27,390

0.2 28/50 134 27,390
0.3 3/50 418 27,391

0.4 3/50 203 27,391

#509 0.1 36/50 286 36,446

0.2 39/50 313 36,446
0.3 2/50 583 36,448

0.4 4/50 848 36,449

Figure 8. Influence of λ on the TD–tree decomposition (RLFAP
and SPOT5 instances).

6.4. Impact of the width of tree decompositions

As stated in the introduction, real–life problems frequently exhibit particular
structures like weakly interconnected clusters (e.g. see Appendix A, Fig. 14). Struc-
tures are related to some topological properties of the tree decomposition and can
be characterized by three measures: width, separators size and clusters degree.
The width of a tree decomposition gives a good indication on the size of sub–
problems, while the last two measures provide information about the connectivity
between clusters. Indeed, the smaller their values are, the less the clusters are in-
terconnected. As pointed out in [12], finding an optimal tree decomposition with
regard to these three measures is an open issue. We have chosen MCS [42] because
this heuristic appears to be a good compromise between the quality of the tree
decomposition and the CPU time required to compute it [22].

6.4.1. Defining two criteria for analyzing a tree decomposition

For a given instance, let w− be the width of a tree decomposition obtained using
MCS. To study the impact of the width of a tree decomposition, we have defined
two criteria:

(i) the decomposability of a problem (w−
n), estimated by the ratio between the

width of a tree decomposition and the number of variables. The lower the
ratio, the more likely the problem decomposes into clusters of small size.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 109

Instance n w− smax mc w−
n

w−
mc

| CT |
Scen06 100 11 8 10 0.11 1.1 55

Scen07 200 22 22 10 0.11 2.2 110

Scen08 458 26 26 10 0.05 2.6 259

Graph05 100 32 32 8 0.32 4 58
Graph06 200 62 61 8 0.31 7.75 123

Graph11 340 117 116 7 0.34 19.5 191

Graph13 458 155 153 6 0.34 25.8 262

#3792 528 89 74 40 0.168 2.225 207

#4449 464 91 87 52 0.196 1.75 157

#6835 496 89 88 59 0.179 1,5 161

#8956 486 141 124 83 0.290 1,6 179
#9319 562 72 70 46 0.128 1,56 253

#15757 342 49 43 29 0.143 1,69 126

#16421 404 76 65 58 0.188 1,31 147
#16706 438 31 29 26 0.070 1,19 186

#10442 908 116 95 68 0.127 1,7 320

#14226 1058 115 103 81 0.108 1,42 374

#17034 1,142 158 151 84 0.138 1,88 388
#6858 992 302 302 131 0.304 2,3 275

#9150 1,352 132 127 86 0.097 1,53 500

Figure 9. Smallest width, maximum separator size, maximum
clique size and ratios for RLFAP, GRAPH and tagSNP instances.

(ii) the precision of a decomposition (w−
mc), defined as the ratio between the width

of a tree decomposition and the maximum clique size (mc)10 for the initial
graph.

The maximum clique size (mc) minus one is a lower bound for the treewidth. It
gives an effective idea about the quality of the obtained decomposition. Indeed,
the closer the ratio (w−

mc) to one, the better the decomposition identifies strong
informative structures of the CFN, enabling to build more relevant neighborhoods.

Figure 9 reports, for each instance among RLFAP ones, GRAPH ones, and tagSNP
ones, the size (n, number of variables), the width (w−) provided by MCS, the
maximum separator size (smax), the maximum clique size (mc) for the initial graph,
the two ratios (w−

n) and (w−
mc), and the number of clusters. Since results for SPOT5

instances are similar to those for RLFAP ones, they are not reported here.

6.4.2. Analysing the instances

(i) For RLFAP instances (see Fig. 9), the width (w−) increases with the problem
size (n), while the ratio (w−

n) decreases. This means that for large instances, clus-
ters are more sparse. Moreover, these problems exhibit a (very) low value for w−

n
(it varies from 5% to 11%). This is not the case for GRAPH instances (particularly
for the two instances Graph11 and Graph13), where values of w−, as well as their

10It can be computed within reasonable time [3].

110 M. FONTAINE ET AL.

ratio, are large compared to those for RLFAP instances. Figure 9 also shows (very)
large gaps (>100) between lower and upper bounds for the largest GRAPH instances
(i.e. very high values for w−

mc), while for RLFAP instances this gap remains small.
This remarkable difference between large RLFAP and GRAPH instances is inherent
to the origin of the instances: the RLFAP instances are taken from real–life whereas
the GRAPH instances are random ones.

(ii) For tagSNP instances (see Fig. 9), we observe a very low value for w−
n

(≤ 0.2) on medium-sized instances, except for the instance #8956. Moreover, the
gap between the maximum clique size (mc) and the width of the tree decomposition
(w−) is relatively small. This probably explains the good performances of DGVNS
on these problems (see Fig. 7), which appear well suited for exploiting of the
decomposition. For large instances, the same remarks can be drawn, except for
the instance #6858, where VNS/LDS+CP obtains a lower cost than DGVNS. The weak
performances of DGVNS on instance #6858 are certainly due to the high value for
w−
n and the large gap between mc and w−. It is difficult for MCS to identify a

pertinent structure that decomposes into more sparse clusters of small size. For
the second particular instance #9150 (see Fig. 7), even though the value of w−

n as
well as the gap between mc and w− are relatively small, DGVNS is not able to reach
the optimum. For this instance, the constraints graph highlights a large sub–part
of the graph which is dense. Such a structure, which tends to be a random one,
does not benefit to DGVNS as a large number of clusters greatly overlap.

(iii) For GRAPH instances. As shown in Sections 6.2 and 6.3, DGVNS and TDGVNS
clearly outperform both VNS/LDS+CP and ID-Walk on RLFAP and SPOT5 instances
(i.e. instances having small values for w−

n). This trend is also confirmed by Graph05
and Graph06, both in terms of success rates and solution quality (see Fig. 10) as
well as in terms of performance profiles (see Appendix B, Fig. 19).

But, for Graph11 and Graph13, VNS/LDS+CP outperforms both DGVNS and
TDGVNS (see Fig. 10). This is certainly due to the fact that clusters are very large
and strongly connected. Thus, the impact of our diversification is weaker since
most clusters have few proper variables and tend to be quite similar. These results
show the limits of MCS to reveal pertinent structures (i.e. weakly connected clusters
of reasonable size). However, if we compare performance profiles (see Fig. 19), we
can observe that TDGVNS behaves well in terms of the evolution of solution quality
(on average) over time compared to VNS/LDS+CP. So, further works have to be
performed in order to draw more precise and definitive conclusions.

Finally, Figure 11 reports the impact of λ on the TD–tree decomposition for
GRAPH instances. The best results are obtained with large values of λ (0.7). Indeed,
as the clusters are relatively dense, a large number of constraints must be removed
to obtain pertinent and appropriate decompositions.

6.4.3. Synthesis

The width of the tree decomposition has a great impact on the performances
of DGVNS. Our experimental analysis demonstrates clearly the effectiveness of our

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 111

Instance Method Succ. Time Avg

Graph05 DGVNS 50/50 10 221

n = 100 TDGVNS-0.7 50/50 8 221
e = 1, 034 VNS/LDS+CP 50/50 17 221

s∗ = 221 ID-Walk 0/50 - 10,584 (2, 391)

Graph06 DGVNS 50/50 367 4,123

n = 200 TDGVNS-0.7 50/50 261 4,123
e = 1, 970 VNS/LDS+CP 50/50 218 4, 123

s∗ = 4, 123 ID-Walk 0/50 - 18, 949 (13, 001)

Graph11 DGVNS 8/50 3, 046 4, 234

n = 340 TDGVNS-0.5 12/50 2, 818 3, 268
e = 3, 417 VNS/LDS+CP 44/50 2, 403 3, 090

s∗ = 3, 080 ID-Walk 0/50 - 41, 604 (27, 894)

Graph13 DGVNS 0/50 - 22, 489 (18, 639)

n = 458 TDGVNS-0.7 0/50 - 11, 449 (10, 268)
e = 4, 915 VNS/LDS+CP 3/50 3, 477 14, 522

s∗ = 10110 ID-Walk 0/50 - 58, 590 (47, 201)

Figure 10. Comparing the four methods on GRAPH instances.

Instance λ Succ. Time Avg

Graph05 0.5 50 / 50 12 221

0.6 50 / 50 13 221

0.7 50 / 50 8 221

Graph06 0.5 50 / 50 339 4,123
0.6 49 / 50 259 4,123

0.7 50 / 50 261 4,123

Graph11 0.5 12 / 50 2,818 3,643

0.6 7 / 50 2,446 3,123

0.7 5 / 50 1417 3,223

Graph13 0.5 0 / 50 - 24,637 (18,833)
0.6 0 / 50 - 19,340 (14,318)

0.7 0 / 50 - 11,449 (10,268)

Figure 11. Influence of λ on the TD–tree decomposition (GRAPH instances).

approach on problems characterized by a low value for w−
n and by a small gap

between mc and w−, i.e. problems that decompose into clusters of reasonable size.
For these problems, MCS provides relevant decompositions that reflect the original
structure of the CFN, enabling a better diversification.

6.5. Impact of removing clusters with few proper variables

Experiments we performed have shown that most of the decompositions we
obtained by MCS contain a large number of clusters with (very) few proper vari-
ables. To increase the proportion of proper variables in the clusters of a tree

112 M. FONTAINE ET AL.

decomposition, we propose to limit the maximum size of separator between clus-
ters (i.e., the maximum number of variables that can be shared). This is achieved
by merging clusters with separator sizes higher than the maximum size allowed.
Our main motivation is to refine tree decompositions obtained by MCS, by remov-
ing useless clusters (those with very few proper variables) and by reducing the
number of clusters that overlap heavily.

To generate new alternative decompositions from the MCS derived tree decompo-
sition, we followed the same scheme as proposed in [23], by bounding the maximum
separator size smax. First, we computed a tree decomposition11 using the same MCS
order as in [38], by setting smax to +∞ (the size of separators is not restricted).
Then, starting from the leaves of the MCS tree decomposition, we merge a cluster
with its parent if the separator size is strictly greater than smax. For our experi-
ments, we considered different values for smax: smax ∈ {4, 8, 12, 16, 24, 32}.

6.5.1. Comparing the performance of DGVNS for different MCS derived tree
decompositions with bounded separators sizes

Figures 12 and 13 compare the performance of DGVNS for different tree decom-
positions obtained on tagSNP instances corresponding to different values of smax.

On six instances (see Fig. 13), merging clusters of the MCS derived tree decompo-
sition (w.r.t. the value of smax) decreases significantly the performances of DGVNS
in terms of success rates as well as in CPU times, compared to smax=+∞. More-
over, the trend is greatly amplified for small values of smax (≤ 12). For instance
#6835, the average CPU time is increased by 37% for smax = 32, and by 56% for
smax = 24. For medium values of smax (12 and 16), average CPU time is multiplied
by more than 3, while for small values of smax the success rate is decreased by 8%.
Similar behaviors can be observed on other instances, particularly on instances
#14 226 and #17 034, where DGVNS performs bad for small values of smax.

The weak results of DGVNS on these instances are probably due to the fact that,
by merging clusters according to the value of smax, the width of the decomposition
tends to increase, degrading its quality. Indeed, the smaller the value of smax is, the
more likely the size of the largest cluster and the width of the tree decomposition
(i.e. w−) are high. Thus, the impact of diversification of DGVNS is very limited as
the neighborhoods are too large and the number of explored regions (number of
clusters) is too small. For instance #6835, with smax = 4, w− increases from 108
to 468 and the number of clusters decreases from 56 to 3. For instance #6858,
this trend is greatly amplified: w− increases from 350 to 988 and the number of
clusters decreases from 105 to 2.

On the contrary, for five instances (see Fig. 12), merging clusters of the MCS de-
rived tree decomposition enables to improve the performances of DGVNS. For most
of these instances (except #16706), smax = 32 gives the best results. On instance
#16421, the average CPU time is divided by 2 compared to smax = +∞, while

11This decomposition is different from the one used for experiments in Section 6.2.3, since it
uses a different MCS order.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 113

Inst. smax Succ. Time Avg |CT | Cluster size
avg. max.

#3792 4 50 / 50 2,381 6,359,805 11 49.36 283
8 50 / 50 1,498 6,359,805 20 29.8 255
12 50 / 50 1,391 6,359,805 29 23.68 157
16 50 / 50 959 6,359,805 37 21.64 139
24 50 / 50 1,028 6,359,805 42 21.42 133
32 50 / 50 832 6,359,805 49 22.18 121
+∞ 50 / 50 954 6,359,805 70 30.37 95

#4449 4 50 / 50 2,399 5,094,256 7 67.85 305
8 50 / 50 1,396 5,094,256 16 33 195
12 50 / 50 1,216 5,094,256 17 31.70 195
16 50 / 50 996 5,094,256 19 29.73 159
24 50 / 50 663 5,094,256 26 27.07 121
32 50 / 50 587 5,094,256 49 22.18 121
+∞ 50 / 50 665 5,094,256 56 36.71 101

#9315 4 50 / 50 1,027 6,477,229 14 41.85 197
8 50 / 50 853 6,477,229 22 28.72 173
12 50 / 50 897 6,477,229 30 23.93 171
16 50 / 50 698 6,477,229 35 22.48 115
24 50 / 50 656 6,477,229 40 22 115
32 50 / 50 555 6,477,229 44 22.5 115
+∞ 50 / 50 788 6,477,229 62 34.41 89

#16421 4 50 / 50 2,170 3,436,849 5 82.2 207
8 50 / 50 2,273 3,436,849 7 60.14 201
12 50 / 50 2,209 3,436,849 11 42.27 201
16 50 / 50 2,369 3,436,849 14 36.28 133
24 50 / 50 1,253 3,436,849 17 33.47 133
32 50 / 50 1038 3,436,849 20 32.8 133
+∞ 50 / 50 2,673 3,436,849 35 42.54 113

#16706 4 50 / 50 131 2,632,310 11 41.36 129
8 50 / 50 132 2,632,310 19 26.68 125
12 50 / 50 105 2,632,310 33 19.66 55
16 50 / 50 99 2,632,310 37 19 51
24 50 / 50 124 2,632,310 46 18.91 49
32 50 / 50 137 2,632,310 49 19.45 49
+∞ 49 / 50 153 2,632,310 49 19.45 49

Figure 12. Comparing the performance of DGVNS for different
tree decompositions of bounded separators sizes.

for #9315, the gain in average CPU time is about 41%. For the other instances,
this gain is about 13%.

For these instances, merging clusters allows to obtain clusters of reasonable size
and to remove clusters that greatly overlap, leading to pertinent neighborhoods
(i.e. weakly connected clusters of reasonable sizes), since most of the merged clus-
ters have few proper variables. Moreover, for these instances, the size of the largest
cluster and the number of clusters for the different decompositions are varying
lightly.

6.5.2. Synthesis

From this study, we show that removing useless clusters (those with very few
proper variables), by bounding the maximum separator size smax and by merging
clusters with separator size strictly greater than smax, enables to better refine the
relevance of the MCS derived tree decomposition and to improve the performances

114 M. FONTAINE ET AL.

Inst. smax Succ. Time Avg |CT | Cluster size
avg. max.

#6835 4 46 / 50 10,781 4,571,140 3 167 469
8 46 / 50 9,925 4,571,122 3 167 469
12 50 / 50 8,075 4,571,108 7 76.71 443
16 50 / 50 7,966 4,571,108 7 76.71 443
24 50 / 50 3,775 4,571,108 16 44.62 235
32 50 / 50 3,321 4,571,108 23 39.26 229
+∞ 50 / 50 2,409 4,571,108 56 53.5 109

#6858 4 0 / 50 - 26,882,903 (26,882,903) 2 496 989
8 0 / 50 - 26,882,903 (26,882,903) 2 496 989
12 0 / 50 - 26,882,862 (26,882,785) 3 334.33 951
16 0 / 50 - 26,882,851 (26,882,785) 3 334.33 951
24 0 / 50 - 26,882,836 (26,882,785) 6 177.66 945
32 0 / 50 - 26,882,790 (26,882,697) 7 156.71 901
+∞ 0 / 50 - 26,882,588 (26,879,268) 105 156.23 351

#8956 4 42 / 50 9,037 6,660,310 9 56.11 215
8 46 / 50 7,109 6,660,309 14 38.42 215
12 44 / 50 7,592 6,660310 15 36.6 215
16 42 / 50 7,580 6,660,310 16 35.12 215
24 41 / 50 7,015 6,660,311 26 29.53 215
32 46 / 50 7,192 6,660,309 30 29.33 215
+∞ 50 / 50 4,911 6,660,308 54 52.03 185

#14226 4 26 / 50 11,973 26131481 20 54.7 237
8 13 / 50 11,737 26,387,778 31 37.19 185
12 28 / 50 11,657 25,758,768 38 32.21 185
16 35 / 50 11,333 25,828,540 42 30.52 179
24 46 / 50 10,930 25,712,052 58 27.48 179
32 22 / 50 10,434 26,108,198 66 27.54 179
+∞ 46 / 50 7,606 25,688,751 94 38.19 159

#15757 4 50 / 50 195 2,278,611 13 27.61 215
8 50 / 50 82 2,278,611 19 21 101
12 50 / 50 54 2,278,611 25 18.44 101
16 50 / 50 64 2,27,8611 29 17.82 73
24 50 / 50 72 2,278,611 41 18.31 73
32 50 / 50 100 2,278,611 43 18.62 71
+∞ 50 / 50 60 2,278,611 45 20.24 67

#17034 4 5 / 50 13,096 39,635,091 21 56.23 445
8 2 / 50 11,979 39,665,758 30 41.26 445
12 5 / 50 12,419 39,573,906 42 32.42 233
16 14 / 50 12,149 39,359,507 55 27.98 231
24 24 / 50 11,407 39,114,487 63 27.19 231
32 32 / 50 11,058 38,838,844 79 27.12 229
+∞ 41 / 50 8,900 38,563,232 139 52.95 189

Figure 13. Comparing the performance of DGVNS for different
tree decompositions of bounded separators sizes.

of DGVNS. However, this method suffers from its rigidity, since the criterion used
to merge clusters cannot take into account the structure of the instance. Indeed,
restricting smax to 32 on problems where the size of separators are very large
would lead to merge all the clusters. Moreover, one may merge two clusters of size
100 with smax = 32, while keeping those of size 32 with a separator size equal to
31. This probably explains the weak results of DGVNS on instances of Figure 13.
It is thus necessary to find more relevant criteria that take into account these
information.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 115

7. Conclusion

We have shown that tree decomposition can be used to efficiently guide the ex-
ploration of the search space. Moreover, we have introduced tightness dependent
tree decomposition which allows to take advantage of both the structure of the
problem and the constraints tightness. Our intensification/diversification scheme
is generic and can be applied to other local search methods such as LNS. Finally,
experiments show that, exploiting such decompositions, enables to clearly outper-
form VNS/LDS+CP and ID-Walk.

We are currently investigating two directions: using separators and proper vari-
ables of clusters to drive the search, and parallelizing the exploration of clusters.

Furthermore, we want to study two other promising directions:

(i) our current definition of constraint tightness does not take into account costs.
Consider the two cost functions w1 and w2 defined on the same subset of
variables: w1 assigns a cost of 1 to every tuple, while w2 assigns a cost of 1000
to every tuple. Both cost functions will be considered with the same tightness.
However w2 has much more influence than w1. As tightness dependent tree
decomposition is appropriate, it would be interesting to take into account
costs, as in [24], to drive the decomposition.

(ii) using hyper–tree decomposition methods [18]. Contrary to tree decomposi-
tion which consists in grouping the vertices in clusters (i.e. variables in sub-
problems), hyper–tree decomposition consists in grouping the constraints (or
hyper-edges) in nodes of the hyper–tree.

Acknowledgements. This work is partly supported by the ANR (French Research Na-
tional Agency) funded project FiCOLOFO ANR-10-BLA-0214. We would like to thank
David Allouche for his help on the tagSNP instances.

116 M. FONTAINE ET AL.

Appendix A

X9 X10

X37

X39

X52

X53

X67X74

X101

X112

X115

X119

X122

X124

X126

X127

X136

X137

X138

X139

X140

X163

X169

X174

X176

X177

X178

X179

X180

X181

X41

X42X109

X118

X145

X148

X194
X195

X196X2

X97
X98

X4

X5

X6

X189X191

X193

X14

X190

X198

X3

X188

X197

X13 X99

X146

X7

X8

X187

X192

X102

X103X104

X116

X135

X141

X142

X183

X82 X85X89 X95 X161

X38X50X57X58 X60 X100

X147

X152
X120

X123

X132

X28X29

X83

X84

X16

X35

X91

X170

X185

X199

X151X133 X186X15 X88X111 X184

X165

X166

X54

X154

X59

X61

X62

X113

X143

X144

X172

X30 X55X56 X33 X26 X31X32X17

X18

X131
X25

X21

X22

X27

X92

X43X44X45X46X107X117 X129 X155X156 X175

X51X93

X128

X36 X73X110X114 X121X134 X182

X23X24X68 X71X72X159X160

X19 X20X47X48 X49X69 X70 X153 X157X158

X108 X150X0X1 X63X64X125

X11X12 X130X164 X168

X149

X105

X106X162

X40

X167

X76

X78

X34X65 X66 X81X75 X77X79 X80

X90X94

X86 X87 X96X171 X173

Figure 14. The constraints graph for instance Scen07. Variables
contained in a same ellipse form a cluster.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 117

Appendix B

0 10 20 30 40 50 60

4,000

5,000

6,000

7,000

CPU time

A
v
e
ra

g
e

c
o
st

scen06

VNS/LDS+CP

TDGVNS-0.2

DGVNS

optimum

0 50 100 150 200

0.5

1

1.5

2

2.5

·106

CPU time

A
v
e
ra

g
e

c
o
st

scen07

VNS/LDS+CP

TDGVNS-0.4

DGVNS

optimum

0 0.5 1 1.5 2 2.5 3 3.5
·103

400

600

800

CPU time

A
v
e
ra

g
e

c
o
st

scen08

VNS/LDS+CP

TDGVNS-0.5

DGVNS

optimum

Figure 15. Comparison of performance profiles on RLFAP instances.

118 M. FONTAINE ET AL.

0 2 4 6 8 10
2.1

2.2

2.3

2.4

2.5
·104

CPU time

A
v
e
ra

g
e

c
o
st

505

VNS/LDS+CP

TDGVNS-0.1

DGVNS

optimum

0 20 40 60 80 100

2.8

3

3.2

3.4

3.6

3.8

·104

CPU time

A
v
e
ra

g
e

c
o
st

507

VNS/LDS+CP

TDGVNS-0.1

DGVNS

optimum

0 200 400 600 800 1,000

4

4.5

5
·104

CPU time

A
v
e
ra

g
e

c
o
st

509

VNS/LDS+CP

TDGVNS-0.2

DGVNS

optimum

Figure 16. Comparison of performance profiles on SPOT5 instances.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 119

0 0.5 1 1.5 2 2.5 3
·103

5.1

5.2

5.3

5.4

5.5
·106

CPU time

A
v
e
ra

g
e

c
o
st

4449

VNS/LDS+CP

DGVNS

optimum

0 1 2 3 4 5 6 7
·103

4.6

4.8

5

·106

CPU time

A
v
e
ra

g
e

c
o
st

6835

VNS/LDS+CP

DGVNS

optimum

0 50 100 150 200 250 300

2.3

2.4

2.5

2.6
·106

CPU time

A
v
e
ra

g
e

c
o
st

15757

VNS/LDS+CP

DGVNS

optimum

Figure 17. Comparison of performance profiles on tagSNP in-
stances of medium-sized.

120 M. FONTAINE ET AL.

0 2 4 6 8 10 12 14
·103

2.15

2.2

2.25

2.3

2.35
·107

CPU time

A
v
e
ra

g
e

c
o
st

10442

VNS/LDS+CP

DGVNS

optimum

0 2 4 6 8 10 12 14
·103

3.8

3.9

4

4.1

4.2

4.3

·107

CPU time

A
v
e
ra

g
e

c
o
st

17034

VNS/LDS+CP

DGVNS

optimum

0 2 4 6 8 10 12 14
·103

4.4

4.6

4.8

5

5.2

5.4

·107

CPU time

A
v
e
ra

g
e

c
o
st

9150

VNS/LDS+CP

DGVNS

optimum

Figure 18. Comparison of performance profiles on tagSNP large instances.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 121

0 5 10 15 20
0

1,000

2,000

3,000

4,000

CPU time

A
v
e
ra

g
e

c
o
st

graph05

VNS/LDS+CP

TDGVNS-0.2

DGVNS

optimum

0 100 200 300 400 500 600

0.4

0.6

0.8

1

1.2

·104

CPU time

A
v
e
ra

g
e

c
o
st

graph06

VNS/LDS+CP

TDGVNS-0.7

DGVNS

optimum

0 0.5 1 1.5 2 2.5 3 3.5
·103

1

2

3

4

5
·104

CPU time

A
v
e
ra

g
e

c
o
st

graph13

VNS/LDS+CP

TDGVNS-0.7

DGVNS

optimum

Figure 19. Comparison of performance profiles on GRAPH instances.

122 M. FONTAINE ET AL.

References

[1] http://www-sop.inria.fr/coprin/neveu/incop/presentation-incop.html.
[2] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a

k–tree. SIAM J. Algebraic Discrete Methods 8 (1987) 277–284.
[3] E. Balas and J. Xue, Weighted and unweighted maximum clique algorithms with upper

bounds from fractional colorings. Algorithmica 15 (1996) 397–412.
[4] E. Bensana, M. Lemâıtre and G. Verfaillie, Earth observation satellite management. Con-

straints 4 (1999) 293–299.
[5] E. Bensana, G. Verfaillie, J.C. Agnèse, N. Bataille and D. Blumstein, Exact and approx-

imate methods for the daily management of an earth observation satellite, in Proc. of
the 4th International Symposium on Space Mission Operations and Ground Data Systems
(SpaceOps-9-) (1996).

[6] C. Boutilier, editor. IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009 (2009).

[7] B. Cabon, S. de Givry, L. Lobjois, T. Schiex and J.P. Warners, Radio link frequency
assignment. Constraints 4 (1999) 79–89.

[8] L.R. Cardon and G.R. Abecasis, Using haplotype blocks to map human complex trait loci.
Trends Genetics 19 (2003) 135–140.

[9] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, M. Zytnicki and T. Werner, Soft arc
consistency revisited. Artif. Intell. 174 (2010) 449–478.

[10] S. de Givry, F. Heras, M. Zytnicki and J. Larrosa, Existential arc consistency: Getting closer
to full arc consistency in weighted CSPs. IJCAI (2005) 84–89.

[11] S. de Givry, T. Schiex and G. Verfaillie, Exploiting tree decomposition and soft local con-
sistency in weighted CSP. AAAI Press (2006) 22–27.

[12] Simon. de Givry, Rapport d’habilitation à diriger les recherches. INRA UBIA Toulouse
(2011).

[13] R. Dechter and J. Pearl, Tree clustering for constraint networks. Artif. Intell. 38 (1989)
353–366.

[14] C.S. Carlson et al. Selecting a maximally informative set of single-nucleotide polymorphisms
for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74 (2004) 106–
120.

[15] M. Fontaine, S. Loudni and P. Boizumault, Guiding VNS with tree decomposition. ICTAI.
IEEE (2011) 505–512.

[16] F. Gavri, The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Comb. Theory Ser. B 16 (1974) 47–56.

[17] G. Gottlob, S.T. Lee and G. Valiant, Size and treewidth bounds for conjunctive queries, in
edited by Jan Paredaens and Jianwen Su. PODS ACM (2009) 45–54.

[18] G. Gottlob, Z. Miklós and T. Schwentick, Generalized hypertree decompositions: Np–
hardness and tractable variants. J. ACM 56 (2009).

[19] G. Gottlob, R. Pichler and F. Wei, Tractable database design through bounded treewidth,
in PODS, edited by Stijn Vansummeren. ACM (2006) 124–133.

[20] P. Hansen, N. Mladenovic and D. Perez-Brito, Variable neighborhood decomposition search.
J. Heuristics 7 (2001) 335–350.

[21] W.D. Harvey and M.L. Ginsberg, Limited discrepancy search, in IJCAI (1). Morgan
Kaufmann (1995) 607–615.

[22] P. Jégou, S. Ndiaye and C. Terrioux, Computing and exploiting tree–decompositions for
solving constraint networks, in CP, edited by Peter van Beek. Springer. Lect. Notes Comput.
Sci. 3709 (2005) 777–781.

[23] Ph. Jégou, S. Ndiaye and C. Terrioux, Strategies and heuristics for exploiting tree–decom-
positions of constraint networks, in Inference methods based on graphical structures of
knowledge (WIGSK’06) (2006) 13–18.

EXPLOITING TREE DECOMPOSITION FOR GNE FOR VNS 123

[24] M. Kitching and F. Bacchus, Exploiting decomposition on constraint problems with high
tree–width, in Boutilier [6] 525–531.

[25] A.M.C.A. Koster, H.L. Bodlaender and S.P.M. van Hoesel, Treewidth: Computational ex-
periments. Electr. Notes Discrete Math. 8 (2001) 54–57.

[26] J. Larrosa and T. Schiex, In the quest of the best form of local consistency for weighted
CSP, in IJCAI (2003) 239–244.

[27] J. Larrosa and T. Schiex, Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159 (2004) 1–26.

[28] S. Loudni and P. Boizumault, Combining VNS with constraint programming for solving
anytime optimization problems. EJOR 191 (2008) 705–735.

[29] R. Marinescu and R. Dechter, AND/OR branch-and-bound search for combinatorial opti-
mization in graphical models. Artif. Intell. 173 (2009) 1457–1491.

[30] N. Mladenovic and P. Hansen. Variable neighborhood search. Comput. Oper. Res. 24 (1997)
1097–1100.

[31] B. Neveu, G. Trombettoni and F. Glover, ID Walk: A candidate list strategy with a simple
diversification device. in Wallace [45] 423–437.

[32] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes.
J. Comput. Syst. Sci. 43 (1991) 425–440.

[33] J. Pearl, Probabilistic inference in intelligent systems, in Networks of Plausible Inference.
Morgan Kaufmann (1998).

[34] L. Perron, P. Shaw and V. Furnon, Propagation guided large neighborhood search, in
Wallace [45] 468–481.

[35] Z.S. Qin, S. Gopalakrishnan and G.R. Abecasis, An efficient comprehensive search algorithm
for tagsnp selection using linkage disequilibrium criteria. Bioinformatics 22 (2006) 220–225.

[36] I. Rish and R. Dechter, Resolution versus search: Two strategies for sat. J. Autom. Reason.
24 (2000) 225–275.

[37] N. Robertson and P.D. Seymour, Graph minors. ii. algorithmic aspects of tree–width. J.
Algorithms 7 (1986) 309–322.

[38] M. Sánchez, D. Allouche, S. de Givry and T. Schiex, Russian doll search with tree decom-
position, in Boutilier [6] 603–608.

[39] M. Sánchez, S. de Givry and T. Schiex, Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques. Constraints 13 (2008) 130–154.

[40] T. Sandholm, An algorithm for optimal winner determination in combinatorial auctions, in
IJCAI’99 (1999) 342–347.

[41] P. Shaw, Using constraint programming and local search methods to solve vehicle routing
problems, in CP, edited by M.J. Maher and J.-F. Puget. Springer. Lect. Notes Comput. Sci.
1520 (1998) 417–431.

[42] R.E. Tarjan and M. Yannakakis. Simple linear–time algorithms to test chordality of graphs,
test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs. SIAM J. Comput.
13 (1984) 566–579.

[43] C. Terrioux and P. Jégou, Hybrid backtracking bounded by tree–decomposition of constraint
networks. Artif. Intell. 146 (2003) 43–75.

[44] H. van Benthem, GRAPH: Generating radiolink frequency assignment problems heuristi-
cally. Master Thesis, Delft Univ. Technol, The Netherlands (1995).

[45] M. Wallace, editor. Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings. Springer. Lect. Notes Comput. Sci. 3258 (2004).

	Introduction
	Definitions and notations
	Cost Functions Network
	Tree decomposition
	Computing a tree decomposition
	VNS/LDS+CP
	Neighborhood heuristics

	Intensification/diversification using tree decomposition
	Tightness dependent tree decomposition
	Computing TD--tree decomposition
	Setting the value of parameter

	Benchmark problems
	Experiments
	Experimental protocol
	Contribution of the tree decomposition
	RLFAP instances
	SPOT5 instances
	tagSNP instances
	Performance profiles
	Synthesis

	Contribution of tightness dependent tree decomposition
	Comparing TDGVNS with DGVNS
	Comparing various values of for RLFAP and SPOT5 instances
	Synthesis

	Impact of the width of tree decompositions
	Defining two criteria for analyzing a tree decomposition
	Analysing the instances
	Synthesis

	Impact of removing clusters with few proper variables
	Comparing the performance of DGVNS for different MCS derived tree decompositions with bounded separators sizes
	Synthesis

	Conclusion
	Appendix A
	Appendix B
	References

