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Abstract

Graphical models factorize a global probabil-
ity distribution/energy function as the prod-
uct/sum of local functions. A major infer-
ence task, known as MAP in Markov Ran-
dom Fields and MPE in Bayesian Networks,
is to find a global assignment of all the vari-
ables with maximum a posteriori probabil-
ity/minimum energy. A usual distinction on
MAP solving methods is complete/incomplete,
i.e. the ability to prove optimality or not.
Most complete methods rely on tree search,
while incomplete methods rely on local search.
Among them, we study Variable Neighbor-
hood Search (VNS) for graphical models. In
this paper, we propose an iterative approach
above VNS which uses (partial) tree search in-
side its local neighborhood exploration. The
resulting hybrid method offers a good compro-
mise between completeness and anytime be-
havior than existing tree search methods while
still being competitive for proving optimality.
We further propose a parallel version of our
method improving its anytime behavior on dif-
ficult instances coming from a large graphical
model benchmark. Last we experiment on the
challenging minimum energy problem found
in Computational Protein Design, showing the
practical benefit of our parallel version. Solver
at www.inra.fr/mia/T/toulbar2 v1.0.

1 INTRODUCTION

Probabilistic graphical models (Koller and Friedman,
2009) are formed by variables linked to each other by
stochastic relationships. They enable to model complex
systems with heterogeneous data and to capture uncer-
tainty. Graphical models have been applied in a wide

range of areas such as image analysis, speech recogni-
tion, bioinformatics, and ecology.

We focus on models with discrete variables like Markov
Random Field and Bayesian Network. Our goal is to
find a global assignment of all the variables with max-
imum a posteriori probability. This optimization task de-
fines an NP-complete problem (Shimony, 1994). Solv-
ing methods can be categorized in two groups: exact
and local search methods. Exact methods rely on tree
search, variable elimination, linear programming, or a
combination of them (Marinescu and Dechter, 2009; Ot-
ten and Dechter, 2012; Allouche et al., 2015). Graph-cut
and message-passing algorithms like loopy belief prop-
agation and variational approaches (Kolmogorov, 2006;
Wainwright and Jordan, 2008; Sontag et al., 2008; 2012;
Wang and Koller, 2013) are exact only in some particular
cases (e.g., Potts model or tree structure). Local search
methods are stochastic algorithms like Gibbs sampling,
Guided Local Search (Park, 2002; Hutter et al., 2005),
and Stochastic Greedy Search (Mengshoel et al., 2011).
Some of them have theoretical asymptotic proof of con-
vergence, i.e., the optimal solution is guaranteed to be
found if infinite time is available. In practice, they may
exhibit a better anytime behavior than exact methods
on large and difficult problems (Marinescu et al., 2003;
Hutter et al., 2005; Mengshoel et al., 2011), i.e., they
produce better solutions in less time.

A few attempts have been done to combine exact and
local search methods. A simple way is to run sequen-
tially a local search algorithm then tree search, where
solutions found by local search will be used as ini-
tial upper bounds for branch and bound exact meth-
ods. Another approach is to design a local search frame-
work where the neighborhood exploration is performed
by tree search in a systematic or non-systematic way.
VNS/LDS+CP (Loudni and Boizumault, 2003) com-
bines a metaheuristic, Variable Neighborhood Search
(VNS) (Mladenović and Hansen, 1997) with Limited
Discrepancy Search (LDS) (Harvey and Ginsberg, 1995),



a partial tree search method (Section 2). We pro-
pose in Section 3 an iterative variant of VNS/LDS+CP
called UDGVNS, adapted to graphical models and able
to prove optimality when the neighborhood size is max-
imal and with unbounded tree search. In Section 4,
we describe a coarse-grained parallel version called
UPDGVNS with asynchronous cooperative execution of
UDGVNS processes with centralized information ex-
change as in (Davidovic and Crainic, 2012; Ouali et al.,
2015). We report experimental results in Sections 5-6.

2 PRELIMINARIES
2.1 GRAPHICAL MODEL
Definition 1 A probabilistic graphical model (or Gibbs
distribution) (Koller and Friedman, 2009) is a triplet
(X ,D,F) with X = {X1, . . . , Xn}, a set of n random
variables, D = {D1, . . . , Dn}, a set of finite domains
of values of maximum size d = maxn

i=1 |Di|, and F , a
set of potential functions. Each variable Xi takes values
in Di. An assignment of X is a set x = (x1, . . . , xn),
with xi ∈ Di. The set of all possible assignments of X
is denoted ∆ =

∏n
i=1 Di. Let A = {D′

1, . . . , D
′
n} with

D′
i ⊆ Di represent a restricted set of ∆ called a partial

assignment. If S is a subset of V = {1, . . . , n}, XS , xS

and ∆S are respectively the subset of random variables
{Xi, i ∈ S}, the assignment (xi, i ∈ S) obtained from
x, and the set of all possible assignments of XS . Given
a set S of part of V , the set F = {fS}S∈S of maps from
∆S to R+, called potential functions, is said to factorize
a joint probability distribution P iff:

P(x) =
1

Z

∏
fS∈F

fS(xS) (1)

where Z =
∑

x∈∆

∏
fS∈F fS(xS) is the normalizing

constant, also called partition function.

Among the various tasks, the Most Probable Explana-
tion (MPE) problem is to find the most likely assign-
ment x ∈ ∆ to all the variables in X maximizing P(x).
By taking the opposite of the logarithm of P(x), i.e.,
− logP(x) =

∑
fS∈F − log fS(xS) − logZ, we obtain

an additive model with ϕ(xS) = − log fS(xS) called en-
ergy functions. Finding a solution of minimum energy is
equivalent to MPE. In the rest of the paper, we consider
energy minimization. When ϕ(xS) maps to N+ ∪ {∞},
the corresponding deterministic graphical model is called
a Cost Function Network (CFN) (Meseguer et al., 2006).
Finding a solution of minimum cost is the same as do-
ing energy minimization on the equivalent probabilistic
model (Hurley et al., 2016).

2.2 TREE DECOMPOSITION

Definition 2 A tree decomposition of a connected
graphical model is a pair (CT , T ) where T = (I, A)

is a tree with nodes set I and edges set A and CT =
{Ci | i ∈ I} is a family of subsets of X , called clusters,
such that: (i) ∪i∈I Ci = X , (ii) ∀ fS ∈ F , ∃ Ci ∈ CT

s.t. S ⊆ Ci, (iii) ∀ i, j, k ∈ I , if j is on the path from i to
k in T , then Ci ∩ Ck ⊆ Cj .

Definition 3 The intersection of two clusters Ci and Cj

is called a separator, and noted sep(Ci, Cj).

Definition 4 A graph of clusters for a tree decomposi-
tion (CT , T ) is an undirected graph G = (CT , E) that
has a vertex for each cluster Ci ∈ CT , and there is an
edge (Ci, Cj) ∈ E when sep(Ci, Cj) 6= ∅.

As finding an optimal tree decomposition is NP–hard, we
use fast approximate algorithms like min-fill heuristic.

2.3 DFBB & LIMITED DISCREPANCY SEARCH

Depth-First Branch and Bound (DFBB) methods explore
a search tree in a systematic way by recursively choosing
the next unassigned variable to assign and by choosing a
value in its domain for the assignment (the branch part)
until a better solution is found or it can be proved that the
subtree rooted at the current search node has no better
solutions and it can be pruned (the bound part). DFBB
depends on its variable and value ordering heuristics for
branching in order to find good solutions rapidly and to
reduce the size of the search tree to be explored.

Limited Discrepancy Search (LDS) (Harvey and Gins-
berg, 1995) is a heuristic method that explores the search
tree in a non-systematic way by making a limited num-
ber of wrong decisions w.r.t. its value ordering heuris-
tic. We assume a binary search tree where at each search
node either the selected variable is assigned to its cho-
sen preferred value (left branch) or the value is removed
from the domain (right branch). Each value removal cor-
responds to a wrong decision made by the search, it is
called a discrepancy. The number of discrepancies is
limited by a parameter denoted `. See Algorithm 1 where
lb(A) gives a lower bound on the minimum energy
minx∈

∏
Di∈A

Di
− logP(x) of the partial assignment A.

In order to produce good quality solutions as time passes,
a simple strategy is to iterate LDS with an increasing
number of discrepancies ` going from `min to `max.
Each iteration does at most ` discrepancies along the
path from the root search node to a terminal node. Let
h be the maximum height of the explored search tree, the
number of terminals with ` discrepancies is bounded by
(h` ). Thus, LDS has a time complexity in O(h`+1) (for
` < h/2 (Larrosa et al., 2016)) and a linear space com-
plexity (thanks to the depth-first search principle as in
DFBB). Notice that h ≤ n+` (` right branches followed
by n left branches). Without any discrepancy limit, we
have at most n(d − 1) value removals (right branches)



Algorithm 1: Pseudo-code of mono LDS
Procedure
LDS(`, A, ub : In/Out, x : In/Out, opt : In/Out)

if (∃Di ∈ A, |Di| > 1) then
Choose an unassigned variable Xi ∈ X , |Di| > 1 ;
Choose a value xi ∈ Di ;
A′ ← (A \ {Di}) ∪ {{xi}} ; // left branch
if (lb(A′) < ub) then LDS(`, A′, ub, x, opt) ;

1 if (` > 0) then
A′′ ← (A \ {Di}) ∪ {Di \ {xi}} ; // right b

if (lb(A′′) < ub) then
LDS(`− 1, A′′, ub, x, opt)

else
2 opt← false ;

else
3 ub← lb(A), x← A ; // new sol. found

to reach a terminal node, where d is the maximum do-
main size of all variables. In order to be able to prove
optimality, we set `max = n(d − 1), i.e., the last itera-
tion is complete. In practice, optimality may be proved
with a much smaller `1, and we just have to check if the
discrepancy limit was reached during the search (falsi-
fied condition at line 1 of Alg. 1) to detect an incomplete
search (flag opt set to false at line 2).

2.4 VARIABLE NEIGHBORHOOD SEARCH

Variable Neighborhood Search (VNS) (Mladenović and
Hansen, 1997) is a metaheuristic that uses a finite
set of pre-selected neighborhood structures Nk, k =
1, 2, ..., kmax to escape from local minima by system-
atically changing the neighborhood structure if the cur-
rent one does not improve the current incumbent solu-
tion. VNS repeatedly performs three major steps. In the
first one, called shaking, a solution x′ is randomly gen-
erated in the neighborhoods of x denoted Nk(x). In the
second one, a local search method is applied from x′ to
obtain a local optimum x′′. In the third one, called neigh-
borhood change, if x′′ is better than x, x is replaced with
x′′ and k is set to 1; otherwise, k is increased by one.

2.5 VNS METHODS IN GRAPHICAL MODELS

The use of VNS scheme for solving deterministic
graphical models started with VNS/LDS+CP (Loudni
and Boizumault, 2003). This approach is related to
LNS (Shaw, 1998), but it adjusts dynamically the neigh-
borhood size when search seems to stagnate as in VNS.

VNS/LDS+CP algorithm. Let Nk be the neighborhood
structure of size k; Nk denotes the set of all subsets of k
variables amongX . Let x be the current solution. First, x
is partially destroyed by un-assigning a subset of k vari-
ables and an exploration of its (large) neighborhood is

1It was less than or equal to 128 for all instances completely
solved by LDS and VNS methods in Section 5.

performed until the solution is repaired with a new one.
The core of VNS/LDS+CP is its reconstruction phase. It
runs LDS with a fixed discrepancy to explore the neigh-
borhood of the solution. One advantage of this choice is
its exploration speed that improves the quality profile and
allows a more balanced exploration of the search tree.

Decomposition Guided VNS. More recently, Fontaine
et al. (Fontaine et al., 2013) investigated the incorpora-
tion of tree decomposition within VNS/LDS+CP in or-
der to efficiently guide the exploration of large neighbor-
hoods. They proposed DGVNS, a first local search ap-
proach that exploits the graph of clusters provided by a
tree decomposition to build relevant neighborhood struc-
tures. For both DGVNS and VNS/LDS+CP, the recon-
struction phase is performed using LDS with a fixed dis-
crepancy `, but neighborhood structures are managed in
a different way. Instead of the neighborhood structures
Nk used by VNS/LDS+CP, DGVNS uses neighborhood
structures Nk,c, where k is the neighborhood size and Cc

is the cluster where the variables will be selected from.
If (k > |Cc|), we complete the set of candidate vari-
ables to be unassigned by adding clusters adjacent to Cc.
The neighborhood change in DGVNS is performed in the
same way as in VNS. However, DGVNS considers suc-
cessively all the clusters. This ensures a better diversifi-
cation by covering a large number of different regions.

3 AN ITERATIVE DGVNS METHOD
We present UDGVNS (see Algorithm 2), unifying two
complete and incomplete search methods. As done by
iterative LDS, it restores the completeness of DGVNS
by applying successive calls with an increasing discrep-
ancy limit, controlling if tree search was partial using opt
flag and the fact that the current neighborhood kept some
variables assigned in A (test at line 9). In UDGVNS, op-
timality can be proven in two cases: (i) when the current
neighborhood corresponds to the whole problem and the
discrepancy value is greater than or equal to the maxi-
mum number of right branches or (ii) by examining the
bounds at the root node (ub = lb(D) at lines 5 and 8).
In this case, the search space is implicitly explored by the
algorithm, therefore optimality is proven.

The initial solution of UDGVNS is obtained at line 4
by a modified version of LDS, denoted LDSr, that
stops immediately after a first solution is found2. Thus
LDSr(∞,D, ub, x, opt) will return a solution with non-
zero probability (i.e., satisfying the constraints).

UDGVNS has two main parameters for tuning its com-
promise between optimality proof and anytime behavior:
the discrepancy limit (`) and the local search neighbor-

2It stops the recursive LDS procedure at line 3 of Alg. 1 and
set the optimality flag opt to false.



Algorithm 2: Unified DGVNS algorithm.
Function UDGVNS(`min, `max,+`, kmin, kmax,+k, ub :
In/Out, x : In/Out) : boolean

let (CT , T ) be a tree decomposition of (X ,D,F) ;
opt← true ;

4 LDSr(∞,D, ub, x, opt) ; // initial solution
5 if (ub = lb(D)) then opt← true;

c← 1 ; // current cluster index
r ← 0 ; // number of iterations
`← `min ; // initial discrepancy limit
while (¬opt ∧ ` ≤ `max) do

i← 0 ; // nb. of failed neighbor.
6 k ← kmin ; // init. neighbo. size

while (¬opt ∧ k ≤ kmax) do
A← getNeighborhood(x,Cc, k) ;
ub′ ← ub, opt← true ;

7 LDSr(`, A, ub′, x′, opt) ; // nei. search
8 if (ub′ = lb(D)) then opt← true;
9 else if (A 6= D) then opt← false;

10 if (ub′ < ub) then
x← x′, ub← ub′ ; // new best sol

11 i← 0, k ← kmin ;
12 r ← 0, `← `min ;

else
i← i + 1 ;
if (k < kmax) then

k ← min(kmax, kmin +k i) ;
else k ←∞;

13 c← 1 + cmod |CT | ; // get next clus.
r ← r + 1 ;
if (` < `max) then

`← min(`max, `min +` r) ;
else `←∞;

14 return opt ;

hood size (k). Recall that inside DGVNS, the maximum
tree height for LDSr is h ≤ k + ` ≤ k(d − 1), so LDSr

has time complexity in O((k min(`, d))`+1). The com-
plexity increases exponentially with ` and polynomially
with k. As soon as a better solution is found by the cur-
rent neighborhood search (line 7), we stop the search
in order to reinitialize the two parameters to their min-
imum value, as it is faster to explore small neighbor-
hoods (lines 11-12). For each parameter, ` and k, we
have tested three updating rules: increase by one at each
iteration (+`/k = +), multiply by two at each iteration
(a +`/k b = mult2(a, b) = a × 2b), and apply a Luby
strategy (Luby et al., 1993) (a +`/k b = Luby(a, b) =
a× luby(1 + b))3.

Operator +k controls the compromise between intensifi-
cation and diversification. The goal of the Luby strategy
is to exponentially increase the number of small neigh-
borhoods explored compared to the number of larger
ones. Whereas classical VNS algorithms will stuck on
large problems, trying to diversify the search by explor-

3Recall luby(i) = {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .}.

ing larger neighborhoods, VNS using Luby will spend
more time on small neighborhoods in order to locally im-
prove the current solution, favoring intensification. The
mult2 strategy reduces the number of neighborhood ex-
plorations at a given discrepancy limit, in order to try
larger discrepancy limits more rapidly. If the problem is
solvable by a complete search within the time limit, it
will also speed-up the optimality proof.

Operator +` controls the compromise between incom-
plete and complete search. Using a fast growing strategy
emphasis completeness whereas a slow growth should
favor anytime behavior. We noticed that it is worth-
while to cover all the variables by the union of the ex-
plored neighborhoods in order to not miss some impor-
tant variables. We tested a forth strategy for k which
consists in a slow increment (by +1) at the beginning
until k = maxi∈I(|Ci|)+ |CT |−1 then it jumps directly
to k = kmax. This ensures that k grows slowly until the
largest cluster has been totally explored by at least one
neighborhood search. Then, when k = kmax = |X |,
UDGVNS does a restart, looking for an improved start-
ing solution, using LDSr applied on the whole problem.
If it fails to find a better solution, a larger discrepancy
can be selected and UDGVNS continues its intensification
process starting with a small neighborhood size (line 6).

4 A PARALLEL VERSION OF UDGVNS

This section describes how UDGVNS can been paral-
lelized. We denote the resulting algorithm UPDGVNS
for Unified Parallel DGVNS. It relies on asynchronous
cooperative execution of several UDGVNS (i.e. work-
ers) processes with centralized information exchange. In
the proposed parallelization one global best solution is
shared among the worker processes. Initially, the master
initiates the search by launching npr worker processes in
parallel with the same initial solution (line 4 done in the
master). Each worker process obtains from the master
a copy of the current best solution x, the index c of the
cluster to be processed and performs destroy and repair
operations on its local copy. As soon as a new solution
is found by a worker, it is sent to the master and a new
cluster is requested (line 13 done in the master) to restart
a new exploration starting from the best available over-
all solution. Like UDGVNS, each worker process controls
locally how the discrepancy limit ` and the neighborhood
size k evolve during successive explorations (except that
ub comes from the master at line 10). The whole process
stops as soon as a worker terminates (line 14) with an
optimality proof or it reaches `max and kmax.
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Figure 1: Comparative evaluation on probabilistic and deterministic graphical models

5 UAI EVALUATION RESULTS
Benchmarks description. We performed experiments
on probabilistic and deterministic graphical models com-
ing from a large multi-paradigm benchmark reposi-
tory (Hurley et al., 2016)4. Among the 3016 available
instances, we selected all the instances that were used
in previous UAI competitions, in image analysis, or in
Cost Function Network optimization. It includes 319
instances from UAI 2008 Evaluation and Probabilistic
Inference Challenge (PIC 2011)5, 1461 instances from
the Computer Vision and Pattern Recognition (CVPR)
OpenGM2 benchmark6 (Kappes et al., 2015), and 281
instances from the Cost Function Library7. In order to
have a fair comparison between solvers, we preprocessed
all the instances by polynomial-time problem reformu-
lations and simplifications that remove variables (using
bounded and functional variable elimination (Favier et
al., 2011)), values (using dead-end elimination (de Givry
et al., 2013)), and fixed-value potentials, after an ini-

4
genoweb.toulouse.inra.fr/˜degivry/evalgm

5
graphmod.ics.uci.edu/uai08/Evaluation/Report/

Benchmarks, www.cs.huji.ac.il/project/PASCAL
6
hci.iwr.uni-heidelberg.de/opengm2

7
costfunction.org/benchmark

tial lower bound computation by Equivalence Preserv-
ing Transformations (Cooper et al., 2010) (enforcing Vir-
tual Arc Consistency (VAC) as a message-passing algo-
rithm). The resulting instances are smaller while pre-
serving the same optimum. We used TOULBAR2 with
options -A -z=2 for this preprocessing step. We kept
1669 non-trivial instances (with more than one variable)
for the experiments. The number of variables n ranges
from 4 (CVPR-GeomSurf-3-gm13) to 48,566 (CVPR-
ColorSeg-8-crops-small) with mean value n ≈ 403.4
(instead of 1, 316.5 before preprocessing). For DGVNS
methods, we built tree decompositions using min-fill
heuristic. Because the number of clusters m = |CT |
can be very large (m ≈ 256.7), we merged any pair
of connected clusters (Ci, Cj) when the separator size
is too large compared to the individual cluster sizes
(|sep(Ci, Cj)| > 0.7 min(|Ci|, |Cj |)), resulting in m ≈
19.9 and mean tree width maxi∈I(|Ci|) ≈ 76.9 (instead
of 49.6 without merging). In order to experiment sequen-
tial and parallel methods on the most difficult instances,
we selected a subset of instances unsolved in 1 hour by
all our DFBB, LDS, and VNS algorithms. We took at
most twenty instances per problem category (avoiding
over-representation issues by some categories), resulting



in a selection of 114 difficult instances8.
Experimental protocol. LDSr employs a randomized
(for breaking ties) dynamic variable ordering heuristic9.
Its value ordering heuristic chooses the EAC value as the
preferred value and lower bounds are deduced by en-
forcing EDAC, as explained in (Larrosa et al., 2005).
In the following, we set kmin = 4, kmax = n =
|X |, lmin = 1, and lmax = n(d − 1). Here, DFBB
corresponds to UDGVNS(∞,∞,+,∞,∞,+), LDS to
UDGVNS(1,∞,mult2, |X |, |X |,+), and DGVNS to
UDGVNS(3, 3,+, kmin, kmax,+).

We compared with state-of-the-art exact solvers.
DAOOPT10 won PIC 2011. It has a time-bounded ini-
tial phase of lower bound computation based on Mes-
sage Passing Linear Programming algorithm (Sontag et
al., 2008; 2012; Ihler et al., 2012) and mini-bucket elim-
ination (Dechter and Rish, 2003) with iterative min-fill
heuristic. It also finds good initial upper bounds using
stochastic local search GLS+ (Hutter et al., 2005). We
tested three parameter settings as suggested in (Otten et
al., 2012), controlling the time spent to compute initial
lower and upper bounds. In the 3600sec setting, SLS is
run 20 times with 10 seconds per run. The best solution
found is used as an initial upper bound for an AND/OR
exhaustive tree search. INCOP+TOULBAR211 (Hurley et
al., 2016) won the UAI 2010 Evaluation at 20 min. time
limit. TOULBAR2 takes a starting solution from the best
result of three runs of the IDWalk (Neveu et al., 2004)
local search algorithm (100,000 local moves per run). It
is followed by an exhaustive hybrid best-first search (Al-
louche et al., 2015). IBM ILOG CPLEX 12.7.0.0 (using
parameters EPAGAP, EPGAP, and EPINT set to zero to
avoid premature stop) was reported as being very com-
petitive on some image analysis (Kappes et al., 2015) and
Markov Random Field problems (Hurley et al., 2016).
CPLEX explores its search tree using best-first search. It
applies several heuristics methods to find good solutions
before and during the search. We also compared with
message-passing algorithms: LIBDAI12 (Mooij, 2010),
winner of the UAI 2010 Evaluation at 20sec. and 1hour
time limits, MPLP213 (Sontag et al., 2008; 2012), and
TRW-S14 (Kolmogorov, 2006). Note that LIBDAI and
TRW-S are applied on the original instances rather than

8UAI DBN, Grid, Linkage, ObjectDetection, CVPR ChineseChars,
ColorSeg-8, InPainting-4, InPainting-8, ProteinInteraction, and CFN CELAR,
ProteinDesign, SPOT5, Warehouse categories.

9Weighted degree heuristic (Boussemart et al., 2004).
10
graphmod.ics.uci.edu/group/DAOOPT-UAI12

11
www.inra.fr/mia/T/toulbar2 version 0.9.8 with parameters -i -

dee -hbfs.
12
bitbucket.org/jorism/libdai.git version 0.3.2 using UAI

2010 settings.
13
cs.nyu.edu/˜dsontag/code/README_v2.html using 2.10−7

int gap thres.
14
github.com/opengm/opengm v2.3.5 with TRW-S v1.3 stopping after

100, 000 iterations or 10−5 gap thres.

the preprocessed ones as we found they produced bet-
ter results without applying VAC first. All solvers read
problems in uai tabular format, except CPLEX which uses
the local polytope formulation (called support encoding
in (Hurley et al., 2016)). All computations were per-
formed on a cluster of 48-core AMD Opteron 6176 at
2.3 GHz and 384 GB of RAM with a 1-hour CPU time
limit15.
Optimality results. The efficiency of DFBB, LDS, and
VNS methods to prove optimality is shown in the cac-
tus plot of Figure 1a. DFBB was slightly more effi-
cient than LDS and solved 1442 (resp. 1433) instances
among 1669 in 1-hour time limit. They are followed
by three UDGVNS strategies with (k mult2, ` mult2)
(1430 solved), (k Luby, ` mult2) (1425 solved) and
(k add1/jump, ` mult2) (1421 solved), remaining
very close in terms of performance. Next, a set
of three less-and-less efficient UDGVNS strategies rise:
(k add1, ` mult2) (1384 solved), (k add1, ` Luby)
(1361 solved) and (k add1, ` add1) (1333 solved),
showing the importance of faster discrepancy increase
to speed up optimality proofs. The worst strategy here
was using a fixed discrepancy level (` = 3 as origi-
nally proposed in (Fontaine et al., 2013)) which solved
1128 instances. For comparison, DAOOPT (3600sec set-
ting) solved 1409 instances, CPLEX solved 1423, and IN-
COP+TOULBAR2 1440 instances (results in Supp. mate-
rial).
Anytime upper bound profiles. In order to summarize
the evolution of upper bounds as time passes, we took
a subset of 114 difficult instances, unsolved in 1 hour
by our DFBB, LDS, and VNS methods (whereas CPLEX
could solve 17 instances). Specifically, for each instance
I we normalize all energies as follows: the best, poten-
tially suboptimal solution found by any algorithm is 1,
the worst solution is 2. This normalization is invariant
to translation and scaling. Figure 1b shows the upper
bound behavior for different VNS strategies compared
to DFBB and LDS (see Supp. material for a zoom).
The ranking of best methods is the opposite of the cac-
tus plot order, except for (k add1/jump, ` mult2)
which comes in second position. The ` = 3 strat-
egy got the best upper bounds in average, but still
very close to the other VNS strategies, except may-be
(k Luby, ` mult2) and (k mult2, ` mult2). We con-
clude that our new iterative UDGVNS method (especially
(k add1/jump, ` mult2)) offers a good compromise
between anytime behavior and optimality proof. These
results also show that variable neighborhood search is
by far superior to classical systematic (DFBB) or non-
systematic (LDS) tree search methods, improving by
more than 20% (resp. 10%) the quality of the solu-

15Using parameter -pe parallel smp min(2x, 30) on a SUN Grid Engine for
a method exploiting x core(s) to ensure half-load of the nodes on the cluster.



tions. In the following figures, we assume UDGVNS with
(k add1/jump, ` mult2) strategy.

Figure 1c compare UDGVNS with state-of-the-art meth-
ods. Message-passing algorithms like TRW-S and LIB-
DAI gave the worst results. They could not find
any solution for 20 (resp. 19) instances (mostly in
UAI/Linkage and CFN/SPOT5 categories, both contain-
ing hard constraints). The same problem occurred for
MPLP2 on 5 instances (SPOT5), but it obtained much
better results on the remaining instances. CPLEX ran
out of memory on two instances without producing
any solution due to the heavy local polytope encoding
(CFN/Warehouse/capb,capmq5). All other methods got
better results in average and produced at least one so-
lution per instance. According to its initial phase set-
ting, DAOOPT provides different anytime behaviors, very
close to the best solutions in 1 hour. UDGVNS performed
the best, slightly better than INCOP+TOULBAR2, im-
proving by 1.7% (resp. 2.3%) on average after 1 hour
(20 min).
Parallelization. Finally, in order to evaluate the im-
pact of core numbers, we consider the anytime upper
bound behavior of the parallel release: UPDGVNS using
(k add1/jump, ` mult2) with `min = 3, taken from
the best strategies enlightened by UDGVNS. We made a
comparison with CPLEX using 10 and 30 cores (results
in Supp. material), improving its anytime behavior, but
still being far from the other competitors (30 cores gave
solutions 10% higher than UPDGVNS after 1 hour). We
could not compare with the parallel version of DAOOPT
as it is based on a different cluster engine (condor) and it
does not parallelize its initial phase.

Figure 1d shows that UPDGVNS (with 10 or 30 cores)
provides slightly better upper bounds than UDGVNS (us-
ing 1 core) in less than 20 min. The results seems to be,
in average, poorly sensitive to the cores number, due to
the fact than the 10-core curve is extremely close from
the 30-core one. The 10 and 30-core UPDGVNS curves
converge quickly in less than 2min. INCOP+TOULBAR2
quickly drops out around 1 min and never reaches the
same quality level. UDGVNS converges slower but still
going down after 20 min. DAOOPT (1200sec setting)
gave results 10% in average worse than UPDGVNS with
either 10 and 30 processors.

6 COMPUTATIONAL PROTEIN
DESIGN

Benchmarks description. One main challenge in Com-
putational Protein Design (CPD) lies in the exploration
of the amino-acid sequence space, while considering, to
some extent, side chain flexibility. The exorbitant size of
the search space urges for the development of efficient

exact deterministic search methods enabling identifica-
tion of low-energy sequence-conformation models, cor-
responding to the Global Minimum Energy Conforma-
tion (GMEC). The GMEC corresponds to a maximum
probability mass due to the Boltzmann relation between
molecular energy and probability, which is, for that mat-
ter, equivalent in the Markov Random Field modeling
with Maximum A Posteriori probability (MAP-MRF) es-
timation.

CPD has been recently modeled as CFN, and various
intensive benchmarking had demonstrated that in most
cases CFN techniques are more efficient than other dis-
crete optimization methods (Allouche et al., 2014), espe-
cially for full design of instances lesser than 100 Amino
acid (Simoncini et al., 2015) . In this paper we would
like to evaluate VNS methods capability to solve difficult
instances. Accordingly, we tried to generate new larger
ones supposed to be more difficult to solve than those
generated in (Simoncini et al., 2015). For this aims, in
a first stage, we selected proteins structure in the PDB
databases with size between 100 and 300 amino-acid.
On the basis of a database query described in the supple-
mentary material, we obtained a first set including 438
PDB references, which has been sorted according to the
average volume per variable calculated using the radius
of gyration of each instance (see Supp. material). At
last, we extracted for benchmarking only the 20th first
elements and used as benchmarking set. Each protein
structure was fully redesigned according to (Simoncini
et al., 2015) protocol. On the basis of energy matrix gen-
erated with a modified release of PYROSETTA.4 script
(Simoncini et al., 2015) in order to use the last released
Rosetta force-field (aka Beta November 2016) (Alford
and others, 2017). The instances (see Supp. material)
contain from 130 up to n = 282 variables with maximum
domain size from 383 to 438, and between 1706 and
6208 cost/energy functions, and besides the tree width
ranges from 21 to 68 and from 0.16 to 0.34 for a normal-
ized tree width.

In this section, we evaluate the effectiveness of UDGVNS
and UPDGVNS on CPD instances in terms of optimality
proof (cf. part (a)) and solution quality vs. CPU time
(cf. part (b)). All computations were performed on a
cluster of 96-core AMD Opteron 6174 at 2.2 GHz and
256 GB of RAM. The parallelization has been done in
MPI.

Experimental Protocol. We compared UDGVNS and
UPDGVNS with VNS/LDS+CP and FIXBB (CPD dedi-
cated algorithm provided by Rosetta package). We also
compared with TOULBAR2. We tested TOULBAR2 us-
ing Virtual Arc Consistency (Cooper et al., 2010) as pre-
processing combined with hybrid best-first search with



tree decomposition (BTD-HBFS) using min-fill heuris-
tic. Dead end elimination is turned off, according to (Si-
moncini et al., 2015) (the resulting command line is:
toulbar2-B=1-A-dee:-O=-3). The TOULBAR2
experiments use a 24-hour CPU time limit.

Concerning the VNS methods, in order to evaluate vari-
ability due to the random selection of neighborhoods,
a set of 10 runs per instance with different seeds has
been performed with a time limit of 1-hour per run.
For the parallel strategy, the number of processes npr
is set to 96 (i.e. maximum number of available pro-
cesses). For UDGVNS and UPDGVNS, following the re-
sults observed in Section 5, we considered the following
two settings for operators +k and +`: (k add1, ` =
3) which yields the best anytime performances and
(k add1/jump, ` mult2) which offers the best compro-
mise between both anytime performances and optimality
proof. kmin, kmax and `min have been respectively set
to 4, n (the total number of variables) and 3 (they corre-
spond to the same parameter settings as those described
in (Fontaine et al., 2013)).
(a) Optimality results. Our first set of experiments aims
at evaluating the efficiency of UDGVNS and UPDGVNS
in terms of optimality proof comparing with TOUL-
BAR2. As indicated before, we used the setting
(k add1/jump, ` mult2). For all methods (see Supp.
material), the CPU-time is the time to find and prove
an optimal solution. TOULBAR2 clearly outperforms the
two VNS methods: UDGVNS and UPDGVNS were able to
prove optimality only on 3 instances among the 10 ones
closed by TOULBAR2. However, the VNS methods are
faster (except on 5dbl), despite the fact that BTD-HBFS
benefits from the lower bounds reported by HBFS in in-
dividual clusters to improve the anytime behavior and
from the global pruning lower bounds of BTD. This
greatly improves the overall performance of TOULBAR2
compared to VNS methods.
(b) CPU time and solution quality results. Our sec-
ond set of experiments aims at evaluating VNS capa-
bility with respect to finding the optimal solution or a
solution of better quality on instances for which opti-
mal solutions are unavailable. For this aims, we selected
(k add1, ` = 3) as setting for operators +k and +`.

Table 1 shows a comparative evaluation of VNS meth-
ods with FIXBB and TOULBAR2. For each instance and
each VNS method, we report the number of successful
runs to reach the optimum (or the best found solution for
unsolved instances) within a 3600-second time limit, the
average CPU times (in seconds) over the 10 runs (for un-
successful runs, the CPU time is set to the time limit) ±
the standard deviation. The Energy gap ∆E between the
best VNS solution and the two external references FIXBB
and TOULBAR2 are also given. For TOULBAR2, reported

CPU times correspond to times to find an optimal solu-
tion (for solved instances) or a best one (for unsolved
ones) within the 24-hour time limit.

VNS methods vs. FIXBB. Rosetta Modeling suite is one
of the most popular software package used in CPD field.
It provides a Monte Carlo based Simulated Annealing
algorithm called FIXBB. In this work, the best solutions
exhibited by 1000 FIXBB cycles performed on each CPD
instance have been used as base-line to compare solution
quality of the solution provided by VNS methods when
TOULBAR2 BTD-HBFS fails to solve the instance.

The FIXBB CPU times are two orders of magnitude
higher than the 1h time limit imposed for VNS evalu-
ation. They are not reported as they exceed 100-hours
in sequential mode, even if FIXBB cycles are indepen-
dent and thus be easy to parallelize. As we can see in
Table 1 (see column ∆E of (4)), the solution quality of
FIXBB is in all cases inferior to the best solution found
by the VNS methods. The Energetic gap ∆E between
FIXBB solution and the best VNS overall solution ranges
between +0.16 and +5.20 Rosetta Energy Unit (R.E.U).
As shown in (Simoncini et al., 2015) such a level of
energy difference can strongly impact the designed pro-
tein solution (i.e. the corresponding sequences of the two
methods can be far in terms of hamming distance).

VNS methods vs. TOULBAR2. The comparison between
best solutions found by VNS methods and TOULBAR2
shows that, excepted VNS/LDS+CP, both UDGVNS and
UPDGVNS provide in all case the same or even better
solution than TOULBAR2 (see column ∆E of (5) in Ta-
ble 1). The Energetic gap ∆E in the worst case reaches
17.86 R.U.E. Concerning the number of successful runs
reported over the 10 runs, VNS/LDS+CP seems less ro-
bust respectively than UDGVNS and the parallel release
UPDGVNS. This last one provides in all cases the best so-
lution over all. Table 1 also compares the VNS methods
in terms of speedups. We observe that speedup values are
fluctuating from one instance to another, very likely due
to the tree decomposition resulting from the 3D shape
of each instance. For VNS/LDS+CP and UDGVNS, it
range between 0.62 and 2.86 over the 14 instances solved
by both methods. As expected, when tree decomposi-
tion and parallelization are used, not only the speed of
resolution increases but the reliability too (speedup val-
ues between 4.1 and 18.5). Moreover, the comparison
between UDGVNS and UPDGVNS shows significant ac-
celerations (between 2.06 and 9.22), thus confirming the
practical interest of parallelization in addition to the ex-
ploitation of problem decomposition. We can observe (in
Supp. material) that both UDGVNS and UPDGVNS find
optimal solutions more quickly than TOULBAR2 within
the one hour time limit (with the exception of UDGVNS



Instance ncl
(1) (2) (3) (4) (5) Speed-up

Succ. Time (s) Succ. Time (s) Succ. Time (s) ∆E Time (s) ∆E (1/2) (1/3) (2/3)
5dbl 87 10/10 2,761± 67 10/10 963± 53 10/10 149± 18 0.27 783 0 2.86 18.53 6.46
5jdd 168 0/10 TO 10/10 3,248 ± 162 10/10 646± 72 4.08 20,662 0.04 - - 5.02
3r8q 157 0/10 TO 10/10 3,478± 82 10/10 397± 47 4.19 12,762 0 - - 8.76
4bxp 108 10/10 1,213± 32 10/10 1,352± 40 10/10 216± 24 0.26 2,966 0 0.89 5.61 6.26
1f00 177 0/10 TO 10/10 2,575± 29 10/10 542± 30 4.38 9,749 0 - 4.75
2x8x 131 10/10 3,312± 111 4/10 2,801± 1,071 10/10 521± 58 4.16 69,213 3.61 1.18 6.35 5.37
1xaw 66 0/10 TO 10/10 581± 38 10/10 260± 57 2.73 2,804 0 - - 2.23
5e10 74 10/10 1,667± 86 10/10 1,412± 21 10/10 132± 24 0.26 1,171 0 1.18 12.62 10.7
1dvo 82 10/10 940± 22 10/10 940± 22 10/10 197± 25 2.90 34,142 0.18 1 4.77 4.77
1ytq 67 10/10 2,235± 211 10/10 1,304± 40 10/10 280± 26 1.67 17,063 0.31 1.71 7.98 4.65
2af5 140 0/10 TO 10/10 2,659± 75 10/10 894± 247 4.37 86,029 0.60 - - 2.97
1ng2 86 10/10 1,065± 69 10/10 547± 18 10/10 260± 26 1.14 38,730 5.93 1.94 4.09 2.10
3sz7 79 0/10 TO 10/10 2,952± 276 10/10 320± 50 3.11 82,625 0.54 - - 9.22
2gee 110 10/10 1,647± 8 10/10 1,276± 19 10/10 286± 38 1.68 5,021 0 1.29 5.75 4.46
5e0z 73 10/10 621± 15 10/10 995± 18 10/10 105± 8 0.16 999 0 0.62 5.91 9.47
1yz7 87 10/10 2,148± 9 10/10 945± 24 10/10 457± 85 2.91 83,816 3.20 2.27 4.70 2.06
3lf9 72 10/10 1,636± 31 10/10 894± 41.17 10/10 216± 21 2.41 2,667 0 1.82 7.57 4.13
3e3v 91 0/10 TO 10/10 2,327± 621 10/10 263± 38 2.57 81,574 0.15 - - 8.84
1is1 107 10/10 3,178± 51 10/10 2,274± 421 10/10 329± 48 3.45 63,832 0.42 1.39 9.65 6.91
5eqz 89 10/10 1,849± 49 10/10 697± 6 10/10 225± 16 2.20 12,768 0 2.65 8.21 3.097
4uos 118 10/10 2,304± 988 10/10 2,109± 62 10/10 469± 79 5.20 58,589 17.86 1.09 4.91 4.5
TO: TimeOut (1): VNS/LDS+CP(k add1, ` = 3) (2): UDGVNS(k add1, ` = 3) (3): UPDGVNS(npr, k add1, ` = 3) (4): FIXBB (5): TOULBAR2

Table 1: Comparative evaluation on CPD instances. In bold instances solved by TOULBAR2. ncl is the number of clusters. ∆E is
in Rosetta Energy unit. It has been obtained by the difference of solutions costs divided by the cost shift used during modeling, in
this case 108.

on 5dbl and 5e10). For UDGVNS, speedup values range
from 0.81 to 18.3 with a mean of 4.23 over all the solved
instances. For UPDGVNS, the ratio in terms of speedup is
greatly amplified (between 5.25 and 56.74 with a mean
of 18.48 over all the solved instances). For unsolved in-
stances, we measured the CPU times spent by the three
VNS methods (within the 3600-second time limit) to
reach the best solution produced by TOULBAR2. Re-
sults (in Supplementary material) show a clear order-
ing in terms of CPU times across different solvers, from
TOULBAR2, VNS/LDS+CP, UDGVNS, and UPDGVNS.
The speedup values are significantly improved, in par-
ticular with UPDGVNS (between 32.3 and 354.6 with a
mean of 168.7 over all the unsolved instances). These
results confirm the superiority of VNS methods in terms
of anytime performance as compared to TOULBAR2.

CONCLUSION

In this paper we proposed a unified view of VNS meth-
ods including various LDS and neighborhood evolu-
tion strategies. Experiments performed on difficult in-
stances, coming from a large graphical model bench-
mark, showed that our hybrid method has a much better
anytime behavior than existing tree search methods and
still being competitive for proving optimality. We further
proposed a parallel version of our method improving its
anytime behavior. It remains as future work to automati-
cally choose the best parameter settings per instance.
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